

Developmentally Sequenced Materials-Based Mathematics

EARLY YEARS PACKAGE

Sequential units with materials-based mathematics for F/K, Year 1, Year 2 and Year 3 teachers and students

Active, highly visual and kinaesthetic hands-on learning with explicit teacher modelling and rich sessions that develop deep understanding, reasoning, problem-solving and fluency - no worksheets!

Engaging real-life mathematics linked to students' interests

Tried-and-tested in Australian classrooms with outstanding principal and teacher feedback and exceptional student growth results

Created by Australian Maths Leaders and Teachers for over 10 years

Easy-to-use: Supports Teachers and Maximises Planning Time

Authentic, Real-life Maths with more than 500 Rich Lessons

Extension and Support:
Pre-planned enabling and extending prompts within each low-floor high-ceiling session

High-Impact, High-Relevance Professional Development through Fishbowl Modelling Tips, Photographs of Lessons in Action and Student Work Samples

Comprehensive diagnostic assessments to target each cohort's point-of-need, linked directly back to the sequential units, in addition to quick formative assessment options

Please note: It is not intended for teachers to attempt to deliver every lesson in this sequence, nor read the unit in full.

Units are designed as a menu of options, depending on the points-of-need for each class or cohort of students.

Please choose from these lesson options based on assessed needs, using either Top Ten or other strategy-focused diagnostic pre-assessments (not multiple-choice/click-theanswer assessments, as mathematics learning at its core focuses on reasoning, thinking and strategies, as well as deep conceptual understanding, not answers alone).

Please also select lessons that best suit students' interests and your own creativity and passion as a teacher.

Adjust how many lessons you deliver based on student progress during each unit, which can be noted using the formative assessment folder.

Addition Developmental Step 4:

All the ways to make and break 3,4 , 5, 6, 7, 8 and 9 (partition)

Curriculum/Syllabus Links for this Lesson Sequence

This unit is recommended for Foundation / Kindergarten and Year 1 students. It is focused on students building trust in the combinations that make the numbers below 10. It takes most students at least two years to develop a deep understanding and fluency in all the ways to make 3 to 9 , which are often under-emphasised compared to the 10 facts and doubles.

Australian Curriculum V9 AC9MFN04 and Victorian Curriculum 2.0 (VC2MFN04)

Number - Foundation: Partition and combine collections up to 10 using part-part-whole relationships and subitising to recognise and name the parts

- recognising numbers represented in physical or virtual ten-frames, and describing their reasoning: 'It's 7 because there is 5 there and 2 more'
- partitioning collections of up to 10 objects in different ways and saying the part-part-whole relationship; for example, partitioning a collection of 6 counters into 4 counters and 2 counters and saying, ' 6 is 4 and 2 more, it's 2 and 4', then partitioning the same collection into 5 and 1 or 3 and 3
- representing part-part-whole relationships in numbers up to 10 using physical or virtual materials; for example, identifying numbers represented by dots in standard number configurations such as on dominoes and dice by recognising parts that form the whole
- exploring number groupings in Aboriginal and/or Torres Strait Islander Peoples' counting systems and the different ways of representing these groupings to form and partition numbers, applying this to quantify collections of objects in the environment on Country/Place up to 10

Australian Curriculum V9 AC9MFN02 and Victorian Curriculum 2.0 (VC2MFN02)

Number - Foundation: Recognise and name the number of objects within a collection up to 5 using subitising.

- recognising how many objects are in a collection or in images on a card with a quick look and saying the associated number without counting
- playing instructive card games that rely on the recognition of numbers represented in different ways (for example, playing memory games, or matching pairs of quantities on dot cards or similar where the arrangement on each is different) or using subitising to compare and order collections and to say who has more when sharing items in a game

Australian Curriculum V9 AC9M1N04 and Victorian Curriculum 2.0 (VC2M1N04)

Number - Level 1: Add and subtract numbers within 20, using physical and virtual materials, part-part-whole knowledge to 10 (this includes ways to make 3-9, not solely 10 facts) and a variety of calculation strategies

- using drawings, physical and virtual materials, and number combinations within 10 to add and subtract collections to 20
- adding and subtracting numbers within 20, using a variety of representations and strategies, such as counting on, counting back, partitioning and part-part-whole knowledge of numbers to 10; for example, using partitioning and combining $7+5=7+3+2=10+2=12$
- developing and using strategies for one-digit addition and subtraction based on part-partwhole relationships for each of the numbers to 10 and subitising with physical and virtual materials; for example, 8 and 6 is the same as 8 and 2 and 4
- representing story problems involving addition and subtraction of numbers within 20 using a Think Board; recognising and using + and - symbols and the equal sign (=) to represent the operations of addition and subtraction; and showing and explaining the connections between any materials used using the language of plus and minus, and the numbers within the story problem
- creating and performing addition and subtraction stories told through Aboriginal and/or Torres Strait Islander dances

Australian Curriculum V9 AC9M1N05 and Victorian Curriculum 2.0 (VC2M1N05)

Number - Level 1: Use mathematical modelling to solve practical problems involving additive situations, including simple money transactions; represent the situations with diagrams, physical and virtual materials; use calculation strategies to solve the problem

- modelling problems involving addition and subtraction presented in stories, using a Think Board to represent the problem, solving the problem using physical materials and explaining the connections between any materials used, the Think Board diagram and the numbers within the story

Western Australian Curriculum Number Pre-Primary: Represent practical situations to model addition and subtraction (ACMNA004)

- using a range of practical strategies for adding and subtracting small groups of numbers, such as visual displays or concrete materials
- using Aboriginal and Torres Strait Islander methods of adding and subtracting, including spatial patterns and reasoning.

Western Australian Curriculum Number Year 1: Represent and solve simple addition and subtraction problems using a range of strategies including counting on, partitioning and rearranging parts (ACMNA015)

- developing a range of mental strategies for addition and subtraction problems.

WA Curriculum - definitions:

Partitioning means dividing a quantity into parts. In the early years, it commonly refers to the ability to think about numbers as made up of two parts, such as, 10 is 8 and 2. In later years it refers to dividing both continuous and discrete quantities into equal parts.

Rearranging parts refers to moving counters, numbers, etc., in order to change the visual representation of the number; for example, '4' could be represented as either of the two combinations below.

New NSW Maths Syllabus - Early Stage 1

Combining and separating quantities - Identify part-whole relationships in numbers up to 10

- use visual representations of numbers to assist with combining and separating quantities, identifying the relationship between the quantities.
- create, model and recognise combinations for numbers up to ten (Reasons about relations).
- use drawings, words and numerals to record addition and subtraction, and explain their thinking (Reasons about relations).

New NSW Maths Syllabus - Early Stage 1

Combining and separating quantities - Model additive relations and compare quantities

- identify situations in which addition and subtraction may be applied.
- combine two or more groups of objects to model addition, identifying the relationship between the parts and the whole.
- use concrete materials or fingers to model and solve addition and subtraction questions, counting forwards or backwards by ones as necessary.

New NSW Maths Syllabus - Stage 1 (A)

Combining and separating quantities A - Recognise and recall number bonds up to ten

- model and record patterns for individual numbers up to ten by making all possible wholenumber combinations (Reasons about patterns).
- create, recall and recognise combinations of two numbers that add up to numbers less than 10.
- describe combinations for numbers using words such as more than, less than and double (Reasons about relations), particularly Lesson 21.

New NSW Maths Syllabus - Stage 1 (A)

Combining and separating quantities A - Use flexible strategies to solve addition and subtraction problems

- represent addition and subtraction using structured materials such as a bead string or similar model, particularly Lessons 1, 7 and 8.
- select and apply strategies using number bonds to solve addition and subtraction problems with one- and two-digit numbers by partitioning numbers using quantity value and bridging to 10 (Reasons about relations), particularly Lessons 2, 5 and 15.

New NSW Maths Syllabus - Stage 1 (A)

Combining and separating quantities A - Use advanced count-by-one strategies to solve addition and subtraction problems

- apply the terms 'add', 'plus', 'equals', 'is equal to', 'is the same as', 'take away', 'minus' and 'the difference between' to describe combining and separating quantities.
- recognise and use the symbols for plus (+), minus (-) and equals (=).
- record number sentences in a variety of ways using drawings, words, numerals and symbols.

New NSW Maths Syllabus - Stage 1 (A)

Combining and separating quantities A - Represent equality

- use the equals sign to record equivalent number sentences involving addition, and to mean 'is the same as', rather than as an indication to perform an operation (Reasons about relations), particularly Lesson 19, as well as Patterns Unit 3.
- Model the commutative property for addition and apply it to aid the recall of addition facts (Reasons about relations), particularly Warm-Up Mixing Colours Commutativity, Lessons 6, 7, 18 and 20.
- recall related addition and subtraction facts for numbers to at least 10 (Reasons about relations).

New NSW Maths Syllabus - Stage 1 (B) - Laying foundations for Stage B content
 Combining and separating quantities B - Represent and reason about additive relations

- create, model and solve word problems, using number sentences, particularly Lessons 4, 7, 10, 11, 13 could transform into worded problem scenarios, with students creating these or solving teacher-provided problems based around these contexts.

New NSW Maths Syllabus - Stage 1 (B) - Laying foundations for Stage B content Combining and separating quantities B - Use knowledge of equality to solve related problems

- use number bonds to determine a missing number, Lesson 2, as well as Patterns Unit 3.
- use number knowledge to solve related problems (Reasons about relations), particularly Lesson 21.
- use a variety of ways of writing number sentences, particularly Templates links from Page 6 and Lessons 19-21.

Teaching Tips

Partitioning means breaking numbers into their parts. A solid understanding of the ways to make $3,4,5,6,7,8$ and 9 provides students with the ideal foundation for much of the work within later addition and subtraction units, particularly using addition to solve subtractions by harnessing the power of fact families. While in years 3-6, fluency with times tables is paramount for many units, in the early years, first an understanding, then a fluency with partitioning holds the same importance for building a solid foundation for addition and subtraction. Many teachers focus heavily on the 10 facts, while placing less importance on the combinations that make the numbers 3 to 9 , which are of equal use to students throughout their mathematical development.

Once students know the ways to make 3 to 9 fluently, they can fluently add single-digit numbers with ease. Students instinctively trust their addition and subtraction answers when they have had lots of materials-based, rich learning experiences involving partitioning. This places them in an excellent position to use the split strategy in their middle years and master vertical addition, once they understand the place values behind this. Partitioning also forms a critical foundation for the building to 10 strategy - if you do not know that 5 is made of 2 and 3 , you cannot add 8 and 5 by breaking 5 into 2 and 3 to make $8+2+3=10$ then 3 more.

Dianne Siemon's Lines in the Sand presentation is highly recommended viewing: The Big Ideas in Number for Each Year Level: youtube.com/watch?v=nPLWAzK0QSQ.

Recording templates for this unit

Throughout this unit, students can record their answers using any of the three recording templates from this unit's folder.

1. _ and is template, building on the work from addition unit 1

2. is made of and , which emphasies the breaking apart (whole, part, part) nature of partitioning numbers
_ is made of _ and
3. Number bond recording templates that are very visual and particularly wellmatched to the lessons where students are using their number bond mats.

4-year pre-schooler student work sample shown at the top of this page

Warm-up Games

Game	Warm-ups for Partitioning
Mixing Colours Commutativity	Hold a whole-class demonstration where you mix two colours together. For example, blue and yellow. What will it make? Let's start with blue, then add yellow. It made green! Will it matter if we change the order? Let's start with yellow first this time, then add blue. It made green again! So, the order does not matter. Do the same with unifix cubes - add 2 blue to 3 yellow. It makes 5 . Next start with 3 yellow and add 2 blue, it also makes 5 ! Repeat with many colours, as well as unifix for the number examples, following each colour demonstration.
Superhero Parties!	Students use a different size frame each day. For this example, the number of the day was 6 , so students were given a 6 -frame. Students are allowed to invite 6 superheroes to their party. Some of the superheroes can be blue (Aquaman, Superman, Captain America, Avatars, Batman - the students can choose a blue superhero they prefer) and some can be red (Spiderman, Wonder Woman). What are all the combinations of red and blue superheroes you could invite to your party (how many blue v. how many red)? The superheroes are represented by two-sided counters. When students flip these counters, they change colours - blue is on one side, red is on the other. This assists with conservation - students know the total is always 6 , they are just changing how many blue or red counters make it. Students can record using the 4, 6, 8 and 10 frame recording templates from this unit's folder.

$$
\begin{array}{l|l}
1=5-4 & 1=5-4 \\
2=5-3 & 2=5-3 \\
3= & 3=3 \times 1 \\
4=6-2 & 4=5-1 \\
5=4+1 & 5=3+2 \\
6=3 \times 2 & 0=3+3 \\
8=6+1 & 7=5+2 \\
8=4 \times 2 & 8=4+4 \\
9=5+4 & 9=3 \times 3 \\
10=6+4 & 10=4+6 \\
11=6+5 & 11=5+6 \\
12=6+6 & 12=4 \times 3
\end{array}
$$

Extension students can record equations used, as above.

Set Up Recommendations

During this unit, many of the best set-up recommendations involve students working independently, following the teacher at-desk whole-class demonstration (fishbowl modelling). Fluently partitioning the numbers 3 to 9 can take considerable time and effort for students, which often means it is important for each student to be able to move at their own pace during these sessions, without being rushed by a more able partner for that particular number.

Formative Assessment - Oral and Ongoing

Students should begin at whichever number they cannot fluently partition (mentally, without materials). For example, ask Ernie, what are some ways to make 3? If Ernie says, '2 and 1, 3 and 0 ,' ask Ernie, what are some ways to make 4 ? If Ernie says, ' 2 and 2, 3 and 1, 1 and 3, 0 and 4,' ask about 5 , until the student cannot fluently tell you the combinations that make that number. No materials should be given for this quick oral assessment. This is the most efficient and accurate way to assess a student's understanding of the ways to make the numbers 3 to 9 .

Cross-check templates from the assessments folder can be used for quick recording and ongoing assessment throughout this unit. There is also a grid template.

Formative Assessment - Ongoing Cross-Check for Addition - Units 1 to 8									
Students	Can add by counting all F/K	Can work out one more than a number up to 10 F/K	Counts on from the larger number L1	Can partition the numbers 3 , 4,5 and 6 F/K	Can partition 7,8 and 9 L1	$\begin{gathered} \text { Uses } 10 \\ \text { facts } \\ \mathbf{L 1} \end{gathered}$	Uses doubles Introduce in L1, master by L 2	Uses near doubles L2	$\begin{aligned} & \text { Can build } \\ & \text { to } 10 \\ & \mathbf{L 2} \end{aligned}$
	Unit 1	Unit 2	Unit 3	Unit 4	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8

Ninja sliders ongoing warm-up and formative

 assessment record sheet - Templates (Ninja folder) Ninjar Nesomber Sriadess

Quick exit tickets for use throughout the unit

After each materials-based session, consolidate students' investigations and understanding for the final 5 minutes of the session, without the materials for support, using circle the parts exit tickets from this unit's folder. This is also a great time to carry out the formative cross-checks, while students are working independently.

Circle 5

4	2	1	5	3	4
4	7	5	2	1	3
3	2	3	3	4	7
2	7	2	2	1	1
2	6	1	7	1	2
6	2	4	1	3	5
1	3	0	5	2	1
7	6	3	5	0	4
5	1	3	2	4	1
2	6	1	7	1	2
1	3	0	5	2	1

Circle 8

4	2	1	8	3	4
4	7	5	2	1	4
3	2	6	3	4	7
2	7	2	1	6	1
2	6	1	7	1	2
6	2	4	4	3	5
1	3	0	8	2	1
7	8	3	8	0	4
5	1	3	4	4	1
2	6	1	7	6	2
1	8	0	5	2	1

Circle	9			
4	9	1	8	3

Students use coloured pencils to circle additions that make 5 . For example, 4 and $1(4+1=5)$. A mid-range extension is for students to circle 3 or 4 numbers that make 8 , for exampe, $5+2+$ 1. Extension students can use red pencil to circle subtractions, such as 7 and $2(7-2=5)$, also recording their equations on an adjacent page in their maths books.

Circle 8

Circle 7

4	2	1	5	3	4
4	7	5	2	1	3
3	2	6	3	4	7
2	7	2	1	6	1
2	6	1	7	1	2
6	2	4	1	3	5
1	3	0	5	2	1
7	6	3	5	0	4
5	1	3	2	4	1
2	6	1	7	1	2
1	3	0	5	2	1

The following lessons introduce partitioning to students

All in the Ninja resources folder (subfolder for this unit plan).

Earning the belts

For example, if the teacher says, "Tell me everything you know about 6 or all the ways to make 6," the student can articulate, " 3 and 3, 4 and 2, 2 2and 4,5 and 1,1 and 5,6 and 0,0 and $6, "$ without using the bead slider.

Congratulations

You achieved your magenta belt.

You know all the ways to make 6!

Ninja Certificates

Congratulations

You achieved your forest belt.
You know all the ways to make 8!

Stuck down to students' desks ready for daily practice.

Ongoing extension 1: For any students who already know all the ways to make 3 to 10, focus on fact families (learning all the subtraction/take away facts from 3 to 10). For example, if a student knows 4 and 5 is 9 , does the
student use this trusted fact to solve 9 take away 4 and 9 take away 5?
Assess students on taking away from 3, then 4, then 5, but stop if they start
using counting back, rather than a 'known fact family strategy' ("Because I
know 4 and 5 is 9, I also know 9 take away 5 is 4").
:---
and all the ways to break (take away), using efficient strategies for addition
and subtraction to 10, make the sliders up to 20, starting at 11, or whichever
number for which they are not yet using efficient strategies.

Partition
 Number Bond Pinball

Lesson 2
Learning intention: Figure out all the ways to make different numbers Maths vocabulary: number bond, ways to make, combinations

Link to

 students' interests video games: Arcade games are the best! What is your favourite arcade? Timezone? Galactic Circus? The Palace Arcade? Level Up? Number bonds are sort of like air hockey at the arcade- you flick numbers around like pucks and see where they land. In Japan (and now in Australia), there are some amazing air hockey tables that do not just stop at one puck at a time:youtube.co

Lesson summary: Students use number bonds (made from kinder circles) to play 'pinball' with their starting number, with some balls falling down and some going up. Students repeat multiple times, aiming to create all the possible combinations to make their starting number.

Materials:

- Number bond laminated mats made from 3 kinder circles and a few slices of rectangular white paper:

- Buttons as the pinballs or pucks. Alternatively, pompoms or circular counters.
- Number bond recording templates.
- For extension: Fact family recording template.

Best set-up: Fishbowl model, then students work independently.
Modelling: Giant model using students with giant chalk number bonds:

Place the centre circle on the left and the two circles on the right. Put your starting number in the single circle on the left, for example, 5 . Now push some buttons up and the rest down. How can you make 5? Record using the number bond recording templates.

Cross-content link to time: To teach time, use number bond mats with place value tens blocks to partition 60 minutes for the 'past' and 'to' concept relating to the analogue clock. Start with 6 tens in the centre circle (one of the tens made of connectable ones cubes). Students push some tens and ones blocks to the top circle and some to the bottom circle to partition 60 (35 minutes past is also 25 minutes to).

To convert minutes (243 minutes) to hours for elapsed time and duration, students start with the whole number of minutes in the centre circle, pushing multiples of 60 to the top to convert minutes to hours and minutes:

76 ming
$=1$ hour
(60 mins)
$+13 \mathrm{mins}$

The following lessons focus on ways to make 5

Partition Lesson 4	Basketball Shootout Learning intention: Figure out all the combinations that total to 5 Maths vocabulary: ways to make, combinations, total
YouTube clip: Who likes basketball? Show students these clips of the longest ever basketball goals (just watch the first 2 minutes because it is a very long clip): youtube.co m/watch? $\mathrm{v}=$ Kjwn5KzY4 V0\&ab cha nnel=Savag eBrickSport s and the best slam dunks of all time youtube.co m/watch? $\mathrm{v}=$ zhvn2- c9BjA Today we're doing basketball maths!	Lesson summary: Students start with 5 basketballs (scrunched post-it notes) and shoot at a hoop (cup), recording the different combinations of ins-outs each time.
	Materials: - Scrunched up post-it notes. - Cups. - Grip mats. - Rubber bands to show the starting number of basketballs (reminding students of their overall total). - Number bond recording templates from this unit's folder. Best set-up: Fishbowl model, then regular like-ability maths buddies.
	Lesson in action
	Modelling: Model with 6 basketballs (scrunched up post-it notes). Place 6 rubber bands on your mat - this is your total number of shots. Act out and record all the ways the shots could go - 4 in 2 out, 3 in 3 out, 6 in 0 out, 0 in 6 out. Emphasise that, if students continue to get many of the same combination (for example, 3 in 3 out), just 'cheat' and create a different combination, which avoids them becoming stuck on one level.

Set the challenge up as a video basketball game-style lesson - who can reach the highest level possible and improve the most from their starting total. For example, if you finish all the ways to make 6 , you get to 7 . How many levels can you conquer before time is up and the buzzer goes?

Record using the number bond recording templates, writing 'in' on the upper right-hand circle and 'out' on the bottom right-hand circle:

Support/Extension: Assign starting totals of basketballs based on students' points-of-need - the number which they cannot orally and fluently partition is their starting number.

Partition
Lesson 5

Heads v. Tails

Learning intention: Figure out all the combinations that make 5 Maths vocabulary: probability, chance, luck, random, tally marks

Big
 question:

Who thinks
coins have brains? Do they decide when they will land on heads or tails, or is it just chance? Use this interactive to do a tally out of 10 flips at least 3 times with the class.
Students could tally the results on a mini whiteboard for each round: justflipacoin. com/?c=blu e

Record the final result: 3H7T and as a fraction each time:

Lesson summary: Students flip a coin 5 times, recording the different numbers of heads and tails out of a total of 5 flips. Students repeat the experiment many times, recording the different heads and tails combinations that can make 5. During the game, consider whether the coins has a brain, or whether the results are just chance/luck/random.

Materials:

- Coins - one per pair.
- Number bond recording template from this unit's folder.

Best set-up: Fishbowl model, then regular like-ability maths buddies.
Modelling: Model the difference between heads and tails, by Google images searching each Australian coin type and zooming in on the heads and tails sides. Most students will not automatically know which side is heads and which is tails. Partner A writes down H I T on a mini whiteboard and flips 5 coins. Partner B records the total number of flips using tally marks. Use the rhyme 'One, two, three, four, at five your close the door!' Partner B says stop when the tally reaches 5 .

Both students record the outcome using the number bond templates:

Questioning:

- Does the coin have a side it likes best, or is it just chance/random/luck? Use this online simulator (keeping the chance of 'heads' set to 0.5), and ask students to predict how many heads and tails there will be based on different total flips you select as a class: digitalfirst.bfwpub.com/stats applet/stats applet 10 prob.html

For round 1, students chose to do 200 flips, and 91 were heads, while 109 were tails. For round 2, the result was 103 heads and 97 tails.

End-of-session reflection: Discuss the chance of heads vs. tails, emphasising the even or fair nature of the coin toss. It is a 50/50 chance. If we all did 100 flips, most of us would come close to $50 \mathrm{H}, 50 \mathrm{~T}$. Try it, with students crossing off tosses on a 120 chart (but only do 100 trials to connect to percentages for extension students), as their partner flips the coin. Swap roles at 50 flips. How many heads and how many tails did you get out of 100 flips? Go around the class and show students the evenness and consistency of the results, even when spread across many different teams.
Support: Begin with 3 coins, later 4, then 5, revising how to partition the smaller numbers first.
Extension: Also record using fractions to show the proportion of heads versus tails for each turn. For example, H H T H H would be $4 / 5 \mathrm{H}$ and $1 / 5 \mathrm{~T}$ reading this as ' 4 out of 5 heads' and ' 1 out of 5 tails.'

$$
\frac{4}{5} H \quad \frac{1}{5} T
$$

Always record fractions as a straight line, with numbers on the bottom and on top, rather than using a slanted / line. Extension students could use the fractions basketball recording template.

Partition
Lesson 6

YouTube

hook: Show students this compilation of some of the world's coolest houses: domain.com. au/news/our-list-of-the-coolest-houses-from-around-the-world20160918 grgtj8/

Number Houses - revising partitioning the numbers 1 to 5 Learning intention: Figure out all the ways to make the numbers 1 to 5 Maths vocabulary: ways to make, combinations, total

Lesson summary: Students make number houses, working out or revising all the ways to make the numbers 1 to 5 .

Materials:

- Number houses templates from this unit's folder.
- Counters - keep the size of the counters fairly small and sufficient quantities so that students can keep the counters on their house in one row, while finding another way to make the same total using more counters on the next row.
Best set-up: Fishbowl model, then regular like-ability maths buddies.
Modelling: Model making your own version using a house of 6 as a giant modelled example, which could then be displayed on your numeracy wall.
Students then try to make the houses for the numbers 1 to 5 as in the photograph. Don't forget about combinations that involve zero!
Questioning:
- Which number from 1 to 5 has the most combinations? Which has the least? Why is this?

Extension: Use A3 paper and work out all the ways to make the teen numbers 11 to 15 , making their own giant number houses for these totals.

The following lessons focus on ways to make 6

Partition Lesson 7	Birds on the Wire Learning intention: Figure out all the ways to make 6 Maths vocabulary: turnaround, ways to make, combinations
YouTube clip: Birds on the wire Pixar animation clip youtube.co m/watch? $\mathrm{v}=$ k2PJ6T7U2 eU	Lesson summary: Students work out all the ways their 6 birds could sit on a wire.
	Materials: - Coat hanger as the wire. - Pegs as the birds. - Number bond template for recording. Students can also write the matching addition number sentences beside these if capable: $4+5=9$ Best set-up: Fishbowl model, then regular like-ability maths buddies.
Now you get to make your own birds on the wire for maths!	Modelling: Model using a different total (to avoid giving students the answers), such as by using 9 birds on your modelling coat hanger. Start with 9 pegs/birds in the middle. Push 4 to the left, 5 to the right. Record using the number bond template, with 9 in the left-hand circle, 4 on the top and 5 on the bottom. Alternatively, record using the and is or is made of and templates, whichever your students prefer.
	Emphasise the turnaround - dramatically flip the coat hanger to find the matching turnaround fact. 5 and 4 makes 9 as well!
	All the ways to make 6

Partition
Lesson 8

Roll a Goal!
Learning intention: Work out all the ways to make 6 , including breaking it into more than two parts
Maths vocabulary: parts, ways to make, combinations, total
Hook: Have
you ever wanted to score the winning goal after the siren on Grand Final day? Well, today our maths session is all about AFL goals. How many points do you get if you kick a goal in AFL? 6! Right, so you are going to be aiming to roll 6 as often as possible. BUT this is not just a game of luck/chance, because you can try to combine your rolls to make 6, and in that way score more goals than your partner!

Lesson summary: Students roll a 6-sided die, aiming to make groups of 6 to score 'goals,' keeping track using $1 \mathrm{~cm}^{2}$ grids.

Materials:

- 6-sided dice.
- Grid paper to draw their score as they play, with each dot taking up a grid to provide structure for students' working out.
Best set-up: Fishbowl model, then regular like-ability maths buddies.
Modelling: Aim for a total of 6 dots in each row - you cannot go over 6, because once you have a total of 6 , you have scored that goal! With each roll, students choose which row to add this to and draw the dots. Draw a line to separate this from the next roll. After they have scored 6 in total, students can record the matching addition sentence beside each row.

Emphasise that students can start a new row of dots or continue from the dots they already have, aiming to create as many lots of 6 dots (goals) as they can before the 'siren.' 10 minute countdown: youtube.com/watch?v=4ASKMcdCc3g\&ab channel=AdamEschborn

Allow students to break apart any rolled number and use it flexibly. For example, if you roll 5 , you can break it into 2 and 3 , adding the 2 to one row and the 3 to another row.

Questioning: Roam the room, asking students what number they hope to roll next. Students must discuss this with their partner before each roll.

Extension 1: Aim for 'super goals' - a total of 9 points.
Extension 2: Use 6 as a target number. Instead of drawing dots, write number equations that total to 6, rolling five 6 -sided dice for the numbers they can use in their equations. Provide double points for equations that use division or subtraction (quadruple if both \div and - are used).
For example, $5 \times 6 \div 6+1=6$
(6 points but used division so doubles to 12 points)

Extension 3 - very advanced extension: Change the game to 'Roll a Whole,' making the rolled numbers on the dice into fractions. Roll 3 or 4 dice, then use 2 of them to make a fraction for each turn.

For example, the student rolled 1, 3 and 4. They chose to make:

Next turn, they rolled 3,5 and 2, so they could do this with the 2 and 3 :

$$
\frac{1}{3}+\frac{2}{3}=\frac{3}{3} \text { or I whole (goal!) }
$$

Students could be using a fraction wall made from folded strips of paper (presliced from A4 paper in advance, to reduce cutting and pasting time, but folded and labelled by them) to check their fractions have made a whole.

Require that extension students have at least two fractions in each goal they score (you cannot just roll $3 / 3$ and score it as a goal).

Extension questioning:

- Will $\frac{2}{4}+\frac{1}{2}$ score a goal? How?
- What will $1 / 3+1 / 2$ make? Will it make $2 / 6$? Ensure students have a line of sixths also made. Lay out $\frac{1}{3}+\frac{1}{2}$ on the top row, and $\frac{2}{6}$ on the bottom of it. No! ${ }^{\frac{1}{3}}+\frac{1}{2}$ is much larger than $\frac{2}{6}$. Challenge students to come up with a way to add the two fractions. What is ${ }^{\frac{1}{2}}$ worth in sixths? What is $\frac{1}{3}$ worth in sixths? So, how many sixths will it be?

Support: Use 5 dots, then 4, then 3.
Extension: Find a way to draw a teen number of dots, such as 17. Break it into all the ways you can see these dots.
Variation or Follow-on warm-ups: Subitising PowerPoint with Dots
This lesson is also sometimes referred to as 'Dot Talks,' a subset of number talks. Number talks class procedures are explained within the final lesson of this unit. The teacher flashes a number of dots on a screen, then students explain how they saw it. The teacher records each student's name and how they saw it on the board, using lines and dots (lines for the group of dots they saw together and dots for any extras they saw individually).

Flash on screen for approximately two seconds:

Subitising PowerPoint with Dots in this unit's folder.
How did you see it?

The following lessons focus on ways to make 7

Student B : Investigate how many more are needed to make 100 ducklings altogether. Try this in your head at first, then by filling the remaining space on top of the hundreds block with tens and ones blocks:
Record: $48+52=100$
Misconception alert: $48+62=100$ because students do not account for the ones making another ten. By building the 100 ducks on top of a hundred block, students see this.

Print 7 ducklings per student (each page prints templates for 2 students):

My pond	My friend's pond	Altogether is

Partition
Lesson 11

YouTube

 hook: Who likes pizza? How does pizza usually get delivered? Well, think again... youtube.com/ watch?v=i9YS Ttzf27o and youtube.com/ watch? $\mathrm{v}=\mathrm{eRs}$ b -uXjqpE (YouTube clips of Dominos Pizza in Japan trialling reindeers to deliver pizza at Christmas). So now you are going to become the reindeer and deliver pizza! Every time you deliver your pizza (tip the 7 counters onto the grip mat / tray), I want you to say, "Pizza delivery - number combinations!"
Pizza Partitioning

Learning intention: Figure out all the combinations that make the number 7 Maths vocabulary: superhero eyes, combinations
Lesson summary: Students tip out a cup full of 7×2-sided/2-colour counters, recording the number that are red and the number that are white, to discover all the combinations that make their total.

Materials:

- 2-sided counters, i.e. counters with red one side and white on the other side (margherita and garlic pizzas), or similar.
- Cups.
- Grip mats for the counters to land on.
- Pizza partitioning recording template from this unit's folder.

Best set-up: Fishbowl model, then regular like-ability maths buddies. Class management tip: Distribute two-colour counters in groups of 7 to each desk (pre-counted in cups prepared by the teacher before the lesson).
Modelling: Model tipping the 7 pizzas out of the cup. When the counters land, arrange them so they are easy to see, like how the number appears on the dice. Now solve it using your maths superhero eyes (revision of Subitising Unit 6) by seeing, rather than counting one-by-one: "I see 5, I see 2, So I see 7." Emphasise the different ways that students see numbers. Now, l'll put the 7 back in and shake it. Is there still 7 in the cup (conservation)?

Emphasise the vocabulary of combinations - what are all the ways to make a number. Students can record using the is made of and template: 7 is made of 5 and 2

Questioning:

- How did you see that number? Show me how you saw it by circling around the parts with your finger - "I see _, I see _, altogether that makes_."
- Are there any other ways to make that number that haven't come up yet? Try to find another way that the cup hasn't delivered to you.

Name \qquad Date \qquad
We are learning to add things together.

4 and 2 makes 6

5 and \perp makes 6

4 and 2 makes 6

3 and 3 makes 6

4 and 2 makes $\sqrt[6]{ }$
$\underline{2}$ and $\mathbb{4}$ makes 6

- and _ makes \qquad

Mid-range student work sample in term 4 of Foundation

The following lessons focus on ways to make 8

Partition Lesson 14	Paperchain Caterpillar of 8 OR Paperchain Sausage Dogs Learning intention: Create all the combinations that make 8 and write the matching addition equations Maths vocabulary: + (and), = (makes) addition equation, parts, combinations, total
Literacy - nume picture book: the liter classic Very Hu Caterpila E. Carle The caterpil took 8 to fill up belly - week and extra day Sunday Monday Tuesda Wednes Thursday Friday, Saturday then Su again!	Lesson summary: Students make their own caterpillar of 8 parts, using either different colours of pompoms, or strips of paper as caterpillar chains.
	Materials: - Pompoms - 2 colours at first, then 3 different colours, 4 and so on. - Alternatively, pre-sliced pieces of green and red paper to make paper chain caterpillars. This material will slow down the session because it will become more craft-oriented. This may be a good end-of-session display for each student to make their favourite combination that totals to 8 , during the final 10 minutes of the session, rather than the way the students initially work out all the ways to make their caterpillars of 8 . - 8 frames - 8 printed boxes to support students to keep their total constant. Use ten frames and slice off two squares. Best set-up: Fishbowl model, then students work independently.
	Caterpillars of 6 example: " 6 and 0 makes 6, I and 5 makes 6,2 and 4 makes 6, 3 and 3 makes 6," and so on.
	Modelling: Model making a caterpillar of 10 using sport balls that are different colours. Model using the + symbol to record, reading this as 'and,' as well as the = sign to mean makes or 'is the same as.' Model making it with 2 colours, then 3 , then 4. Now students make their own caterpillar of 8 using paperchains. Emphasise that, once students create all the combinations that make a caterpillar of 8 using two colours, they can then add a third colour, finding ways to make 8 using three parts. Then try 4 different colours. Keep checking that your caterpillar makes 8 , not 9 or 7 .

The following lessons focus on ways to make 9

Partition

Lesson 15

Winter

Olympics
hook: This session is similar to the unusual sport of curling, shown here youtube.com/ watch? $\mathrm{v}=\mathrm{uj}-$ U45zUxP4

Outside maths: Today, we are going outside and doing sport for maths!

9 Bean Bags

Learning intention: Figure out all the ways to make 9 and write addition equations Maths vocabulary: inside, outside, + (and), = (makes), addition equation / addition number sentence, parts, combinations, total
Lesson summary: Students throw a total of 9 bean bags towards hoops outside, recording the combinations that make 9 in terms of how many landed inside and how many landed outside the target.

Materials:

- Hoops and bean bags. Alternative: Students slide (like Winter Olympics curling) or flick 9 counters, aiming for these to land inside the circle of the in-out template. Counters that land anywhere else are placed back onto the template page, but outside the circle.
- One of the three recording templates from this unit's folder (the number bonds template is the most suitable for this session). Alternatively, students can write the addition equations free-hand in their books.
Best set-up: Fishbowl model, then regular like-ability maths buddies.
Modelling: Model using 9 bean bags as a class. Emphasise that students must record as they play - if they are caught just playing the game without doing the maths, they can be given a worksheet about 9 , instead of enjoying fun maths sessions that use materials.
Midway mini extension: Create a third category - close or near throws - on the edge of the hoop or within 5 cm (a little finger) away from the hoop. This partitions 9 into three parts: 3 (in) +4 (out) +2 (close) $=9$
In-classroom version for a repeat session: The hook for this repeat session could be the Winter Olympic sport of curling on the ice: Template available.

2 in and 7 out makes $9 \quad 2+7=9$
Support: Use a smaller total, aiming to become more fluent at partitioning 5, 6 or 7 - whichever number is their current point-of-need.
Extension: Students can throw 2 different colours of bean bags, recording the partition in 4 parts:
2 (yellow bean bags in) +3 (yellow out) +3 (blue in) +1 (blue out) $=9$
$2+2 \times 3+1=9$

Partition

Lesson 16

Towers of 9
Learning intention: Figure out all the ways to make 9, including breaking it into more than 2 parts, and write matching addition number sentences
Maths vocabulary: + (and), = (makes), addition equation / addition number sentences, turnaround, parts, combinations, total

Real-life link:

Who likes
building towers?
During the eating time prior to this session, show students this YouTube clip, which has plenty of measurement, about some of the tallest towers in the world:
youtube.com/ watch? $\mathrm{v}=\mathrm{V} 72$ PbkoGXGQ or browse this list
thecollector.co m/what-are-the-5-tallest-buildings-in-the-world/

Lesson summary: Students make a total tower of 9 unifix, then break it apart in all the possible ways they can.

Materials:

- Connectable cubes - all the same colour for each student.

Best set-up: Fishbowl model, then students work independently.
Student sample of the exact same lesson, repeated for towers of 10:

After completing a tower of 9, note how this student added one cube to make a tower of 10, then progressed beyond this, focusing on towers of 11-14.

Modelling: The teacher can model making a tower of 12 (higher than 9), then breaking it into parts and recording all the addition number sentences.

```
    I2
5+7
7+5 (turn the tower around - the turnaround fact)
4+8
4+4+4
3 groups of 4 or 3 < 4
```


Questioning:

- If you turn your tower around (rotate it 180 degrees), does that equation still make 9 ?

Support: Use a total that is more suited to their point-of-need for partitioning (i.e. a tower of 5, 6, 7 or 8). Emphasise the turnaround facts as fun freebies!

Extension: Towers of 19.

Emphasise finding multiplications that make 19. For example, 3 groups of $6+1$ extra makes $19,3 \times 6+1=19$

Halfway through the session, King Kong or Godzilla attacks their tower! Snap blocks off their tower to create subtraction equations as well. For example, 9 take away 2 leaves $7,9-2=7$

Try to create multiplications and subtractions in the same number sentence: $2 \times 5-\mathrm{I}=9$

Formative Assessment - Exit Ticket: "9 friends are playing in a cubby house. Some are inside and some are outside. How many could be inside and outside?"

Students can use drawings, materials and numbers to try to answer this, aiming to brainstorm as many possible combinations as they can.

The following lessons revise partitioning from 3 to 9 - different numbers can be assigned to students, depending on their capability to partition numbers so far during this unit. Please note: 10 facts involve partitioning ten, therefore that skill falls into the upcoming Addition Unit on 10 Facts.

Partition Lesson 17	Colourful Cities Learning intention: Figure out all the ways to make 4, 6, 8 and 10, including breaking those numbers into more than two parts Maths vocabulary: + (and), = (makes), addition equation, parts, combinations, total
Real-life hook: Google image search 'colourful cities.' You may also wish to Google image search specifically for Portobello Road (London); Bristol; the street where Paddington Bear lived; the Rio favelas (Brazil); and Cinque Terre (Italy), or zoom into images on the following page.	Lesson summary: Students create all the ways to make a number using two colours of blocks or counters on top of the different number frames.
	Materials: - Colourful connectable cubes (prepare cups that have 2 colours in them). - Ten frames that have been sliced to become 4, 6 and 8 frames as well. - 4, 6, 8 and 10 -frame recording templates from this unit's folder. Best set-up: Fishbowl model, then regular like-ability maths buddies.
	Modelling: Model an example of a number together as a class, aiming to find all the ways to make that colourful city. For example, for 6 :
	6 blue, 0 yellow
	5 blue, 1 yellow
	4 blue, 2 yellow
	(shown to the
	right)
	3 blue, 3 yellow
	2 blue, 4 yellow 1 blue, 5 yellow
	0 blue, 6 yellow
	o blue, 6 yellow
	As students
	become confident,
	increase the type
	of number frame
	use and also add
	(red in addition to
	yellow and blue).
	Questioning: - Can you see any patterns? - Do some numbers have more ways to make them than others?

Partition Domino Parking Lot and Domino Trains

Lesson 18
Learning intention: Quickly recall the combinations that make $\mathbf{0}$ to 9 , and beyond Maths vocabulary: superhero eyes (subitise), ways to make, count on, total, addition equation, turnaround fact / commutativity, rotate, 180 degrees
Read: Read (or YouTube search) the Domino
Addition or 12 ways to get to 11 numeracy picture books.

Games link: Who likes playing dominoes?
Well, the more dominoes we place around our addition facts today, the bigger our massive domino wall will be at the lesson's conclusion AND...we will be knocking it over! Watch a few minutes of this clip: youtube.co $\mathrm{m} / \mathrm{watch}$? $\mathrm{v}=$ DQQN 79Q

Lesson summary: Students using subitising and ways to make to work out the total of dominoes, placing these into a 'domino parking lot.' Students record each addition equation in their books.

Materials:

- Dominoes.
- Domino parking lot template from this unit's folder.
- Alternative set-ups: Kinder circles with totals written in the centre or A3 paper folded into quarters, as shown in photos on the following pages. Best set-up: Fishbowl model, then students work independently.
Modelling: Model subitising the numbers into visual lots of 2,3 and 4 s , using enlarged examples of dominoes made using A4 paper folded in half with dots drawn onto them. Use maths superhero eyes (Subitising Unit) to see the numbers, rather than count them. "I don't need to count that there's 3 dots on that side, I can just see 3!" See the parts, then use "I see_, I see_, so I see _" to solve the total.

Emphasise for students to use their knowledge of combinations and ways to make numbers to trust the total, rather than counting all. For example, you know 5 is made of 2 and 3 , so if a domino has 2 on one side, and 3 on the other side, it makes 5 ,
 you don't need to count the dots, trust what you know! When you place a domino on its parking spot, record the two parts as an addition equation in your book: $2+3=5$, reading this as, " 2 and 3 makes 5."

If students do not know what two numbers make, encourage them to cover the larger side of the domino, then count on from there by touching the smaller side's dots one by one. For example, for a 7 I 2 domino (if they do not know it makes 9 using ways to make, cover the 7 and say "7," then tap the 2 dots on the other side while counting, " 8,9 !" Discuss if an equation holds true if you rotate the domino 180 degrees (a half turn). Students should record the turnaround equations as well in their book, rotating the domino 180 degrees: $2+3=5 \quad 3+2=5$ (also refer to this as the commutative law of addition)

Questioning:

- How many dots are on this side of the domino? Did you count that or just see it?
- If the student cannot solve it using their trust in the 'ways to make' a number: Which side of the domino would you start counting from to work out the total as quickly as possible?
- If I rotate that domino 180 degrees, does it still make _?
- Which total was the most popular in your parking lot? Why do you think that was?

End-of-session peer-assessment: Ask students to check the parking lots of like-ability peers. Then combine their parking lots into one. Reflect on which numbers have more and less combinations and possible reasons for this. The larger the total, the more combinations it has!

Support: Use a pre-organised cup of smaller dominoes that total to just 6, with a reduced size car park cut off at 1 to 6 (the top row of the template).

Extension: Record all 4 parts of the fact family.

Cover one side of the domino, 4 take away 3 makes 1 : $4-3=1$

Cover the other side, 4 take away 1 makes 3: $4-\mathrm{I}=3$

Record using the recording extension fact family house template in this unit's folder.

Partition

Lesson 19

Games

link: Play a regular version of bingo with students first, so they understand the nature of the game. Students could create their own board, writing down 9 numbers that range from 0 to 100, then using this free interactive (choose the 0-100 number range) to read out numbers abcya.com/ games/num ber-bingo or using Google's random number generator (setting it to 0 min and $100 \mathrm{max})$.

Bingo!

Learning intention: Be able to quickly recall the combinations that make $\mathbf{0}$ to $\mathbf{9}$ Maths vocabulary: number combinations, counting on, total, addition equation Lesson summary: Students verse a like-ability partner to achieve bingo by 'scoring' the numbers $0-9$ using mostly addition, but also subtraction equations where the student is capable of these and wants to use them for the purpose of the game's end goal.

Materials:

- One 6-sided and one 3-dot dice per pair.

Best set-up: Fishbowl model, then regular like-ability maths buddies.
Modelling: Write the numbers 0 to 9 down your page. Roll a 6 -sided die and a 3 -dot die. Add the two dice together, then write the equal sign to mean 'same as' and record the equation beside that total. Use your trust in ways to make the number to work out the total, seeing both parts, thinking, "I see_, I see_, that makes_." For example, 6 and 3 makes 9 (score 9 by recording: $9=$ $6+3$). If you do not know the total using ways to make, use counting on by putting 6 in your head (hands literally on their head), then tapping the dots on the smaller rolled number, "7, 8, 9!"

Alternatively, you could use subtraction to score a number, particularly if you had already scored 9. For example, 6 take away 3 leaves 3 (score 3, $3=6$ 3). The first player to 'score' all the numbers wins. Always record the equation you used beside each. There is a way to get 0 - ensure you show this in your modelling: 5 take away 5 (cover the 5) leaves 0 .

Support: Write the numbers 2 to 9 to avoid needing to use any subtraction equations.

Extension: Write the numbers 0 to 18, rolling two 10 -sided dice and including subtraction equations. Allow the use of multiplication and division, providing a 'free extra number scored' bonus whenever a division is used in any of their equations.

Note how the equal sign is used to mean 'same as' and starts from the left, rather than always being right-oriented. Students read this as, " 9 is the same as 6 and 3." Or " 2 is the same as 3 take away 1."

Here the student rolled examples that made 4, 2 and 0 many times, so there were multiple recordings for those totals. 10 was ticked, because it could not be rolled using a 3-dot and 6-sided dice.

Create this as a class, with a few equation cards given to each student (written on coloured paper). For reduced teacher preparation time and more involvement for students, students could create the equation cards themselves, writing 5 equations such as $3+4=$ \qquad , then swap cards with a like-ability partner to place them correctly along the giant class number line.

Partition
Lesson 20

YouTube hook: The sport of 'dice stacking.' Watch the first 2 minutes of this YouTube clip showing a pro at this sport:
 youtube.com/ watch? $v=7 \mathrm{G}$
 7zQXTfnnU\& list=RDCMU Cc4JGh0O0 AO0Asj6MA S0w\&start radi o=1\&t=17\&a b channel=J oshHorton

Competitive game: This dice game involves a bit of luck and a bit of skill. Who will win?

Roll it up!
Learning intention: Be able to quickly recall the combinations that make $\mathbf{0}$ to $\mathbf{9}$ Maths vocabulary: number combinations, counting on, total, addition equation
Lesson summary: Students roll two 6-sided dice, recording the total of their roll using the roll it up template in this unit's folder.

Materials:

- 2×6-sided dice.
- Roll and graph recording templates from this unit's folder - players record using the one sheet between them.
Best set-up: Fishbowl model, then regular like-ability maths buddies.

Modelling: Giant model around a desk, using an A3 enlarged version of the roll it up recording template for your teacher modelling, and two 6-sided dice (giant ones if possible). Always enlarge the materials for the at-desk demonstration for better visibility for students (first 5-8 minutes), then play for the second part (final 5 minutes) of the modelling with the regular materials.

Invite a student partner to compete against you. Ask them to choose their favourite number, shading over this in green on the recording sheet. Then you choose a number yourself, shading this in red. Continue until each player owns 5 numbers (e.g. you own 5, 3, 6, 4 and 8 ; I own 7, 9, 10, 2, 11), with 1 of the 11 possibilities belonging to no one (e.g. 12).

Model rolling the dice and combining them to figure out the total. Emphasise for students to use their superhero eyes to see what they rolled, then to use their knowledge of number combinations that make totals (partitioning), or counting on if needed, by covering the larger rolled number and counting on by tapping the dots on the smaller rolled number. Write the matching addition equation in the correct column, creating a column graph that will highlight the most frequently occurring total.

If the total belongs to you, you get a point. If the total belongs to your partner, they get a point (it does not matter who rolled, just who 'owns' the total from the choices made at the start of the game). Whoever has the most points, after one column is full, wins! Collect a new gameboard and repeat.

Students who are capable can use their grid books to record.
Student work samples

Support: Use two 3-dot dice and the roll it up support version that only includes totals from 1 to 6.

Extension: Use 3 dice and allow subtractions in their equations. For example, if a student owns the numbers $5,9,8,4$ and 2 , then rolls 5,6 and 1 , they would not want to make 12. So, instead, they may do $6+1-5=2$ to make a total that they own. Also encourage the use of multiplication and division in their equations, offering an extra point for equations that include these operations (or two extra points for division).
Reflection - Connection to Probability: Without rolling the two dice, brainstorm with their partner all the ways to make each of the totals on the gameboard, recording this in the columns.
Figure out the best numbers that they should have chosen (5, 6 and 7), and the worst numbers (2 and 12), according to which numbers have the most and fewest combinations when rolling two 6 -sided dice.
Also create a tree diagram to investigate the actual probability of each total, out of the 36 possible outcomes:

As shown above, we can see that a total of ' 2 ' only arises in 1 out of 36 rolls. Whereas, a total of ' 7 ' arises in 6 out of 36 rolls, or $1 / 6$ of the time!
Variation: Change the dice rolled, such as rolling a 3-dot and 6 -sided dice, or rolling one 6 -sided and one 10 -sided dice. How does this change which numbers you select to 'own' at the start of the game? Which numbers have the most combinations now? Which numbers would you avoid selecting?

Partition

Lesson 21

Mathematician

talk: You are all mathematicians and you know so much about numbers already. I want you to reach deep within that maths brain of yours and show me everything you know about this number.
What do you notice?

Number Talks for 6 to 10
Learning intention: Show everything you know about our number of the day Maths vocabulary: ways to make, and (+), take away (-), groups of (x), shared between ($\stackrel{\text {) , odd, even, double, less, more, missing from ten }}{ }$

Lesson summary: Students discover and show everything they

 know about 6, 7, 8 and 9, after a modelled whole-class number talk. Number talk strategies: No hands up. Students instead hold a fist to their chest. Put one thumb up when they have one strategy and the answer. Two fingers up (still with their fist held against the middle of their chest, to avoid long waving hands distracting others) for two strategies. Three fingers up for three strategies, and so on.After a few minutes of thinking time, students are called upon to contribute strategies, with their name and strategy illustrated on the front whiteboard. Other students wave their fist in a surfing "Yeah dude!/Hang 10!" motion (closed fist, little finger and thumb out waving) if they used the same strategy, to recognise their own thinking as well. Students are also encouraged to mention and build upon other students' strategies, such as, "Mine was similar to Jenny's, except I did..."

Number talks are about mental strategies (no paper-based strategies). The strategy is then shown in number sentences or drawings on the whiteboard, basically as an imprint of the student's thinking for others to see and consider.

Materials:

- All about 6 to 10 Number Talks PowerPoint from this unit's folder.
- Ten frames for students to draw the number of the day.
- Popsicle sticks for students to move around and manipulate the drawings on their ten frame.

Best set-up: Model using a whole-class number talk, then students work independently.

Modelling - "What do you notice about 6?" During the first number talk, model in detail using the PowerPoint display (editable version), with students approaching the board with the screen displayed and holding their rulers to show you something they notice about 6 . "I see 6 as 4 and 2," (using their ruler to show the parts they saw). "I see 6 as double 3." "I see 6 as 4 missing from 10." "I see 6 is even because everyone has a partner."

Questioning: Detailed questioning tips are outlined at the start of the All about 6 to 10 Number Talks PowerPoint, particularly on page 1 of the PowerPoint and are also copied on the next page.

Support 1: Use mostly drawings to record, as shown in the support work sample above.

