Developmentally Sequenced Materials-Based Mathematics

EARLY YEARS PACKAGE

Sequential units with materials-based mathematics for F/K, Year 1, Year 2 and Year 3 teachers and students

Active, highly visual and kinaesthetic hands-on learning with explicit teacher modelling and rich sessions that develop deep understanding, reasoning, problem-solving and fluency - no worksheets!

Engaging real-life mathematics linked to students' interests

Tried-and-tested in Australian classrooms with outstanding principal and teacher feedback and exceptional student growth results

Created by Australian Maths Leaders and Teachers for over 10 years

Easy-to-use: Supports Teachers and Maximises Planning Time

Authentic, Real-life Maths with more than 500 Rich Lessons

Extension and Support:
Pre-planned enabling and extending prompts within each low-floor high-ceiling session

High-Impact, High-Relevance Professional Development through Fishbowl Modelling Tips, Photographs of Lessons in Action and Student Work Samples

Comprehensive diagnostic assessments to target each cohort's point-of-need, linked directly back to the sequential units, in addition to quick formative assessment options

Please note: It is not intended for teachers to attempt to deliver every lesson in this sequence, nor read the unit in full.

Units are designed as a menu of options, depending on the points-of-need for each class or cohort of students.

Please choose from these lesson options based on assessed needs, using either Top Ten or other strategy-focused diagnostic pre-assessments (not multiple-choice/click-theanswer assessments, as mathematics learning at its core focuses on reasoning, thinking and strategies, as well as deep conceptual understanding, not answers alone).

Please also select lessons that best suit students' interests and your own creativity and passion as a teacher.

Adjust how many lessons you deliver based on student progress during each unit, which can be noted using the formative assessment folder.

Place Value Unit 12 Two-Digit Numbers Hyperlinked Table of Contents

Curriculum Links for Year 1 and revision for Year 2 Pages 5-8

Formative Assessment Page 9 Teaching Tips Pages 10-12

Warm-up Games: Count by 10 Songs, Giant Circle Modelling, Place Value Circles and Gallery Walks, Place Value Dance, Place Value War Pages 13-16

Lesson Sequence and Options

Lesson 1 Towers of Ten Pages 17-19		Lesson 2 Race to 120 Pages 20-30	
Lesson 3 Worded Form Sliders Pages 31-37		Lesson 3 Renaming Extension Pages 35-37	
Lesson 4 Abacus Tens and Ones Pages 38-45		Formative Assessment Options Pages 43-45	
Lesson 5 Echidnas of Ten Pages 46-50		Lesson 6 The TwoDigit Birthday Party Pages 51-62	

[^0]
Place Value Developmental Step 12: Make, read, write and order two-digit numbers (partition into tens and ones)

Curriculum/Syllabus Links for this Lesson Sequence

This unit is recommended for Year 1 students, following the previous Place Value Unit 11 on counting to 120 by ones. The focus is the bundling and renaming concept (10 of these is worth 1 of those - 10 ones makes 1 ten), as well as the partitioning concept - making, breaking apart and understanding two-digit numbers as tens and ones.

Australian Curriculum V9 AC9M1N02 and Victorian Curriculum 2.0 (VC2M1N02)

Number - Level 1: Partition one- and two-digit numbers in different ways using physical and virtual materials, including partitioning two-digit numbers into tens and ones

- using physical and virtual materials to partition numbers into counts of tens and ones; for example, recognising 35 as 3 tens and 5 ones or as 2 tens and 15 ones
- using part-part-whole reasoning and physical or virtual materials to represent 24 , then partitioning 24 in different ways and recording the partitions using numbers; for example, 10,10 and 4 combine to make 24 or 10 and 14 combine to make 24
See also Place Value - Unit 16 Renaming.

Australian Curriculum V9 AC9M1N03 and Victorian Curriculum 2.0 (VC2M1N03)

Number - Level 1: Quantify sets of objects, to at least 120, by partitioning collections into equal groups using number knowledge and skip counting

- counting a large collection of items using groups of fives or tens and skip counting to work out how many there are, and recording the amount and connecting the digits in the number to the grouped materials when using groups of 10
- counting collections of objects, such as pencils or images of birds in a tree, by grouping them in tens to enable efficient counting, and connecting the digits in the number to the groups of tens and ones
- counting a large collection of Australian $\$ 1$ coins by stacking them in piles of 10 , skip counting in tens and including any leftover coins to determine the total value

Australian Curriculum V9 AC9M1N01 and Victorian Curriculum 2.0 (VC2M1N01)

Number - Level 1: Recognise, represent and order numbers to at least 120 using physical and virtual materials, numerals, number lines and charts

- reading, writing and naming numerals and ordering two-digit numbers from zero to at least 120, using patterns within the natural number system, including numbers that look and sound similar, for example, 16, 60, 61 and 66 - see Building numbers changing positions cards in particular, as well as Place Value Unit 13 Teen Numbers
- using number tracks or positioning a set of numbered cards in the correct order and relative location by pegging them on an empty number line - see also Place Value Unit 14 Rounding and Estimation
- using hundreds charts to build understanding and fluency with numbers; for example, collaboratively building a hundreds chart using cards numbered from zero to 99, or colourcoding the count of tens in a hundreds chart using one colour to represent the number of tens and another to represent the number of ones
- recognising that numbers are used in all languages and cultures but may be represented differently in words and symbols (for example, through kanji numbers in Japanese and characters in Chinese) and that there are alternative numeration systems (for example, using special characters for 10 and 100 and other multiples of 10 in Japanese and Chinese numeration)

Australian Curriculum V9 AC9M1A02 and Victorian Curriculum 2.0 (VC2M1A02)

Algebra - Level 1: Recognise, continue and create repeating patterns with numbers, symbols, shapes and objects, identifying the repeating unit and recognising the importance of repetition in solving problems

- recognising within the sequencing of natural numbers that 0-9 digits are repeated both in and between the decades and using this pattern to continue the sequence and name two-digit numbers beyond 20

Australian Curriculum V9 AC9M2N01 and Victorian Curriculum 2.0 (VC2M2N01)

Number - Level 2: Recognise, represent and order numbers to at least 1000 using physical and virtual materials, numerals and number lines

- recognising and locating the position of pieces within hundreds chart puzzles using knowledge of the order of natural numbers
- collecting large quantities of materials for recycling (for example, ring pulls, bottle tops and bread tags) and grouping them into ones, tens and hundreds, and using the materials to show different representations of two- and three-digit numbers

Western Australian Curriculum Number and Place Value - Year 1: Recognise, model, read, write and order numbers to at least 100. Locate these numbers on a number line (ACMNA013)

- modelling numbers with a range of material and images
- identifying numbers that are represented on a number line and placing numbers on a prepared number line.

Western Australian Curriculum Number and Place Value - Year 1: Count collections to 100 by partitioning numbers using place value (ACMNA014)

- understanding partitioning of numbers and the importance of grouping in tens
- understanding two-digit numbers as being comprised of tens and ones/units.

New NSW Maths Syllabus - Stage 1 (A)

Representing whole numbers A - Represent the structure of groups of ten in whole numbers

- recognise that ten ones is the same as one ten.
- use 10 as a reference in forming numbers from 11 to 20.
- count large sets of objects by systematically grouping in tens.
- partition two-digit numbers to show quantity values.
- use number lines and number charts to assist with locating the nearest ten to a number.
- estimate, to the nearest ten, the number of objects in a collection and check by counting in groups of ten (Reasons about quantity).

New NSW Maths Syllabus - Stage 1 (B)

Representing whole numbers B - Use counting sequences of ones and tens flexibly

- identify the number before and after a given three-digit number, particularly Lesson 18 Extension 3 of this unit plan.
- count forwards and backwards by tens, on and off the decade, with two- and three-digit numbers, particularly pages 103-108 of this unit plan.
- identify how many more to the next multiple of ten within two- and three-digit numbers: Throughout this unit (Lesson 1, Lesson 2, Lesson 6 Extension 1, Lesson 7 Extension 1, Lesson 12 Extension 1, Lesson 12 Variation 4, Lesson 16 Extension).

New NSW Maths Syllabus - Stage 1 (B)

Combining and separating quantities B - Form multiples of ten when adding and subtracting two-digit numbers

- add two-digit numbers by building to multiples of ten. Throughout this unit plan (Lesson 1, Lesson 2, Lesson 6 Extension 1, Lesson 7 Extension 1, Lesson 12 Extension 1, Lesson 12 Variation 4, Lesson 16 Extension).
- add and subtract from a two-digit number and record on an empty number line: Throughout this unit plan (Lesson 1, Lesson 2, Lesson 6 Extension 1, Lesson 7 Extension 1, Lesson 12 Extension 1, Lesson 12 Variation 4, Lesson 16 Extension).

Formative Assessment

A formative assessment cross-check is available in this unit's folder with progressive learning goals and specific success criteria for this unit. This includes a grid template or a section template for notes, whichever the teacher prefers to use.

There is a place value think board, which mentions base-ten blocks, but can be used earlier with students making their number using popsicle stick bundles or cubes for this part of the template.

Throughout this unit, there are several exit tickets and formative assessment options. On pages 43-45, there are three rich formative assessment options outlined, which can be used as exit tickets or mini assessment tasks. There are also building tens and ones mini exit tickets, as explained on page 59 and 63 . On pages 78-80, there is also a place value scavenger hunt exit ticket. The place value monsters from pages 133-135 are also ideally used as an exit ticket.

Teaching Tips

The ideal progression of materials for teaching tens and ones is as follows:

1. Ten frames and connectable cubes (unifix cubes $2 \mathrm{~cm}^{3}$ variety)
2. Bundled popsicle sticks
3. The abacus
4. Place value blocks - tens and ones.

Place value blocks (MAB) should only be used once students have had multiple experiences with all the bundling materials (unifix cubes, popsicle sticks, abaci), in order to develop a strong trust in the big idea that 10 ones makes 1 ten.
'Ty' or ' \mathbf{t} ' stands for ten. Encourage students to count their tens as ' 1 ten, 2 tens, 3 tens, 4 tens,' then count ones, and finally say the number altogether as ' 4 ty 5 ' or ' $4 t 5$.' This is preferable to students counting '10, 20, 30, 40,' as saying ' 1 ten, 2 tens' encourages students to see ten as its own unit (unitising). Would you prefer students to be scaffolded to visualise 40 as ' 4 tens' (place value form), or as '40 little ones' (as expanded form encourages)? The difference between these two forms (place value form versus expanded form) is particularly evident when students attempt to add or take away a ten. Students who can visualise 45 as 4 tens 5 ones can far more easily add or subtract tens by thinking (4 tens 5 ones -3 tens, so 1 ten 5 ones are left). Students stuck in 'expanded form mode' are attempting to do this ($40+5-30$), which is far more challenging. When students record tens and ones numbers in their place value form as '4t5' or '4ty5', it will literally sound like 'forty-five' when read out loud ("4ty5!").

As the English language is not ideal for mathematical teaching, only some of our tens numbers follow a regular pattern in terms of their worded form:

Follows the ty pattern	Does not follow 'ty' pattern for worded form		
Forty - 4t5 or 4ty5 is literally said as "forty- six." This way of recording two-digit	Teen -14, which says the ones first, then the numbers, using place value form to show ten. 'Fourteen' with the 'teen' standing for 'ten,' so it basically says 'four and ten.' This is the reason the Teen Numbers unit is after the Two- $4 t y 5$ or 4t5 (with ty/t signifying 'ten'), supports the oral and written language. It highlights the composition of 45 as 4 tens and 5 ones, which our language does not do as seamlessly as most others.		Digit Number unit in the Early Years Package,
:---			
as teens are the most problematic, due to the			
structure of the English language.			

If we are counting from 6 and adding ten, let's think about how it should sound. We should ideally say: 1 t6 as in 1 ten six ones, like most Asian languages which follow a 'tens_ones' pattern in the way the numbers are actually said and written. Our language does not follow this pattern until forty, and then skips fifty, finally following a pattern from sixty to ninety.
$1 t 6=1$ ten 6 , but we say sixteen instead, with the ones at the front and ten on the end as 'teen'!

2 t 6 = 2 tens 6 , but we say twenty-six (not twoty-six as it should be)
$3 t 6$ = should be three-ty six, but is thirty-six, using the ordinal form of 'thir' as in 'third.'
$4 t 6=$ forty-six, it makes sense (apart from the spelling)!
$5 t 6=$ should be five-ty six, but is fifty-six, using the ordinal form of 'fif' as in 'fifth.'
$6 t 6=$ sixty-six!
7t6 = seventy-six!
$8 t 6=$ eighty-six!
$9 \mathrm{t} 6=$ ninety-six!

In stark contrast, most Asian languages make far more sense than English. For example, in Chinese, the teen numbers are said literally as 'ten-one' (11) and 'ten-two' (12), while forty-five is said as 'four ten five,' making the place value form (tens) entirely explicit within the language itself. This is why using place value form is so important, because it emphasises how the numbers should actually be understood, which most Asian languages do automatically.

As a class, read about other languages and the way these languages make learning the value of the tens place much easier for students: https://www.clozemaster.com/blog/chinesenumbers/ (Chinese), https://www.fluentin3months.com/japanese-numbers/ (Japanese) and learnentry.com/english-malay/vocabulary/numbers-in-malay/ (Malaysian).

Problem-solving challenge for students: Imagine you are the Prime Minister of Australia and have decided to pass a law to change the names of the two-digit numbers, so that the tens numbers make more sense in how we say, read and write them. What would you call each ten? Further prompt: If English did follow a pattern, so all two-digit numbers were said/written consistently to show their tens and ones values, what should each tens number actually be called? Potential answers: Onety, twoty, threety, fourty, fivety, sixty, seventy, eighty, ninety! Or, 'two tens three' for 23 ;' ' 6 tens 4 ' for 64 '; and so on, mirroring the Asian languages above.

Definitions of the forms in which students may be requested to represent numbers

- Standard form: The number is written in digits, for example, 45.
- Worded form: The number is written in words, for example, forty-five. Two-digit numbers should follow the grammatical convention of being recorded with a hyphen between the tens and ones, such as 'twenty-four.' Support tools for worded form:
- Google translate (with both languages set to English) will read numbers out loud for students (use headphones to reduce classroom noise levels).
- lingojam.com/NumbersToWords: This website converts numbers from digits (standard form) to words for students, as a check for immediate feedback.
- Top Ten spelling assistance charts available in cursive and stick and ball font.
- CRITICAL TIP! Place value form: The number is written in a way that highlights its place value composition, for example, ' 56 ' would be read out loud as, " 5 of the tens, 6 of the ones," or " 5 tens, 6 ones." Students record using mathematical shorthand, such as $5 \dagger$ 6 ones, or in short '5t 6u' or '5ty 6u' as 'ty' connects to the worded form but should always be read back as " 5 tens 6 ones" out loud by students to conceptualise each place. Avoid writing 'o' for 'ones,' as this could be confused with 0 - instead write 'u' for units, which is also language that appears in the curriculum (ones/units are used interchangeably, but 'units' avoids the risk of the 'o' from 'ones' being confused with 0).
- Expanded form: 526 as $500+20+6$. Avoid over-emphasising (mostly only lesson 16). CRITICAL TIP! Australian numeracy coaches recommend focusing on place value form, and to avoid over-emphasising expanded form. Expanded form encourages students to see numbers as large sets of ones, rather than thinking in place values and seeing each place as a unit in itself. This leads to a student seeing 526 as 500 ones +20 ones +6 ones, rather than as ' 5 hundreds, 2 tens and 6 ones.' If the student needed to add 100 to 526 , with a place value form understanding she could use the strategy $5 \mathrm{~h}+1 \mathrm{~h}$ makes 6 h (5 hundreds +1 more hundred, visualising the place value blocks), but with an expanded form understanding they would be more inclined to start counting on, by ones, from 526.

Warm-up Games

Place Value Handfuls and Place Value Gallery Walks	 The next day, change the nature of the materials you use - beads, popsicle sticks, and so on. However, students will gradually see that (no matter what type of material is involved) it is a consistently excellent strategy to bundle it into tens and ones.			

Place Value Dance	Students make different actions for each place value, creating a number using dance. For example, side-step for ones, jump for tens. Make 58: 5 jumps and 8 side-steps. Invite student volunteers to the front of the room to perform a dance while the others keep count, working out the number they made. Students could record each number in standard, worded and place value form. For example, using 4 columns, students write:
	Dance Standard form (digits) Worded form (words) Place value form $(h+t+u)$
	5 spins 2 jumps 4 side-steps$\quad 524 \quad$Five hundred and twenty- four$\quad 5 h+2 t+4 u$
Place Value War	Students flip over cards and rearrange the place values, aiming to create the highest number. Students also use place value blocks to prove it. On alternate days, you could ask students to aim for the lowest number possible. If students end up with the same number, they go to war: play another round that's worth double points. Students can also record all their numbers, in words and numbers, then organise them into ascending or descending order at the game's end. Extension: - Make the lowest possible even number - Make the highest possible odd number - Make the highest possible multiple of 2 - Make the highest possible multiple of 5 (first person to be able to create one wins; unless both students can, then the highest multiple of 5 wins)

Tens-ones
Lesson 1

Real-life

link: Show students these images of 29 stunning castles around the world: buzzfeed.co m/ariellecald eron/gorgeou s-castles-from-around-theworld?utm te rm=.veMA3jk Bj\#.amG6Bk AP

Link to

 students' interests: Link to Minecraft, where players aim to create towers and castles to defend their empires from other players. Students could watch this time lapse of the creation of a majestic Minecraft castle:
Towers of Ten

Learning intention: Make bundles of ten and say two-digit numbers using the language of tens-ones, and the ' \mathbf{t} ' or 'ty' pattern ($\mathbf{6 t 3}$ sixty-three) Maths vocabulary: ten (10 ones), ' \mathbf{t} ' and 'ty' for tens, cube
Lesson summary: Students use cubes to make towers of ten. Students then join a whole-class circle for practice at reading tens numbers as tens and ones (7 tens 5 ones), as well as using the 'ty' language pattern, such as ' $7 \underline{t} 5$.' When a number does not follow the pattern, such as 5t3 (said as 'fifty-three,' instead of 'fivety-three'), students make a crazy face to show that number refuses to follow the normal pattern.

Materials:

- Connectable cubes - as many as possible from throughout the school for this session. Distribute in tubs to the middle of students' group desks. Keep about 50 cubes spare for the whole-class circle part.
- Tens and ones recording template from this unit's folder

Best set-up: Students work independently, then join the whole-class circle.

Modelling: Ask students why they think ten was chosen the most important number in our place value system? Provide 5 minutes think time. Most historians think it was because of our fingers - we have ten fingers, so every time we reach ten, our numbers reset and count from a new ten.
Teach students the rules to saying tens numbers and the exceptions:
If you have $4 t 5$ (4 tens and 5 ones), we say $4 t 5$ ' ' ' or 'ty' stands for tens
If you have $6 t 5$ (6 tens and 5 ones), we say $6 t 5$
If you have 7 t5 (7 tens and 5 ones), we say $7 \mathrm{t5}$ If you have 8 t5 (8 tens and 5 ones), we say 8t5 If you have 9t5 (9 tens and 5 ones), we say 9t5
Exceptions: We say twenty not 'two-ty.' We say 'thirty' not 'three-ty,' like 3 in a race - third. We say 'fifty-ty' (like coming five in a race), not 'five-ty' but it

youtube.com/ watch? v=tm0 p bBq500	sounds very similar. Teen numbers say ten at the end as 'teen' - they may be the smallest, but they are the trickiest! Next, students go to their desks and build towers of ten using the cubes. Link to 3D shape vocabulary: Instead of calling them blocks, call the unifix 'cubes.' Chorus this language with the class. What shape is on each face of a cube? How many squares does it take to make a cube? Link to skip-counting: Students can also use this opportunity to practise counting by twos to ten as they build their towers - practise as a class first, and play a counting by twos song as the pre-warm-up for this lesson: youtube.com/watch?v=GvTcpfSnOMQ\&ab channel=ScratchGarden Stop students every 2-3 minutes with the catchphrase 'tower check' (use a YouTube countdown or a sand timer as a reminder). Students need to write down how many towers they have, recording this in tens and ones as, " 6 t 2 , I have 62." This literally sounds like 'sixty-two' when saying 't' to represent tens (6 tens 2 ones $=6$ t2 or 6 ty2). Encourage students to count their tens as " 1 ten, 2 tens, 3 tens, 4 tens," then count their ones and say the number altogether: "6t2". This is preferable to students counting ' $10,20,30,40$,' since it instead encourages students to see ten as its own unit, rather than as lots of ones. Students can record using the tens and ones recording template from this unit's folder. Whole-class circle when all blocks run out: When the class runs out of cubes, come together in a circle. Go around the circle and invite each student to read out and write down (on a mini whiteboard in ' t ' format) their final total. Check it for accuracy against the blocks they have laid out in front of them and ask the student to count the tens out loud, saying these as, "1 ten, 2 tens, 3 tens, 4 tens, 5 tens, 6 tens and 3 ones, I have 6 t 3 ." The wholeclass then checks the count together in chorus, " 1 ten, 2 tens, 3 tens, 4 tens, 5 tens, 6 tens, 3 ones, we have 6t3." When the number is crazy, such as twenty, thirty and fifty (which do not follow the ' t ' pattern because 3 t 2 is said as 'thirty-two' not 'threety-two'), students all make a crazy face in the circle. Reveal to students that you have a leftover delivery of building cubes. Give the students two minutes to try to work out how many more cubes they need to complete their final tower. Link this to their 10 facts, if your final tower only had 4 in it, 4 and what makes 10 ? Go around the circle with students politely requesting their extra cubes to complete their final tower of ten. "I have 4. May I have 6 more please?" Finally, use all the completed towers of ten to build a class castle as a team (linking back to the hook about castles). Asl students to estimate its total. Then work it out as a whole-class.

| Questioning: |
| :--- | :--- |
| - What do you have at the moment? Can you read it to me in 'tens and |
| ones,' for example, "I have 5 tens and 3 ones, I have 5 t3 or 53 ." |
| - If I gave you this extra tower of ten, what do you have now? |
| What if one of these towers of ten was lost in battle e take away one of |
| their towers as you ask this), what do you have now? |$|$

Tens-ones
Lesson 2

Race to 120

Learning intention: Make tens and record your numbers in place value form Maths vocabulary: ten (10 ones), place (ones place, tens place), place value form ("_tens __ ones", 't' to represent 'tens'), rename (10 ones is 1 ten)
Real-life racing link:
Since this lesson is a race between partners, link it to formula 1 car racing using this clip youtube.com/ watch?v=0lij6 Q9gN4RQ This clip is also full of dramatic racing moments: youtube.com/ watch? $\mathrm{v}=\mathrm{SBi}$ 92AOSW2E. Now, get your number engines ready, set, go! The teacher could even make a mini racing flag, like the one they wave at the Grand Prix, for extra engagement!

Lesson summary: Students race to reach 120 cubes before their partner, rolling a 10-sided die to add to their ones, bundling and renaming their cubes into tens whenever they have more than 9 in the ones. Each turn, students say and record their running total in tens and ones language (place value form: 4 of the tens, 2 of the ones = 4t 2).

Materials:

- 10-sided dice.
- Connectable cubes.
- Nine-frame T-O chart on following pages or from this unit's folder. Each student plays on their own chart, then exchanges dialogue with a partner who is racing against them on a separate chart.
- Race to 120 recording template from this unit's folder.

Best set-up: Fishbowl model, then regular like-ability maths buddies.

Students record as they play using 'tens' or 't' (place value form), 1t $6=16$.
This Race to 20 recording template is also in this unit's folder, although students generally use the Race to 120 recording template for this session.

The year 1 (term 1) student sample in the right-hand side photograph shows the same game but with a 'race to 20 ' context for the first session. Extension students were also asked to record, using red pencil, how many more blocks they need to make 20 (finish the race).

Modelling: Model for students to roll their die, then collect that number and put it into the ones. Finally, combine the ones into ten if they have enough to make ten. If students start making their ten before they collect the full number they rolled, they often forget how many to collect. Encourage students to collect a new colour for each roll, which also helps avoid confusion. There are 9 spots in the ones place - when you reach ten or more (so the cubes can't fit in the ones), you need to rename them, since 10 ones is worth 1 ten. The 10 ones cubes that have been bundled together then belong in the tens place as 1 ten. Use the word 'renaming' to explain this - you have 10 ones, but you can just call it by its nickname: '1 ten.' That doesn't change the number that it is - we have nicknames, but we are still the same person! We call these 'two-digit numbers,' the first digit shows how many tens you have, the second shows how many ones. Which place is worth more? If you were trying to get more than your partner to win the race, which digit would you want to be larger, the tens or the ones place? Point out that students must watch their partner very closely to ensure they only collect the number of cubes they rolled on the die. Each turn, student A must also read their current number to student B in tens and ones place value form, "I have 2 tens and 8 ones - I have $28, "$ otherwise they must give the number they rolled over to their partner. If there is a disagreement over the tens and ones total, players can call across the umpire (teacher) to adjudicate. Misconception alert: Avoid races to 100 (use 120 instead) because some
students then encounter difficulties bridging over 100 and think that 200 or
1000 comes straight after 100 or 110.

tens

Tens-ones
Lesson 3

YouTube

 hook: If one big step is roughly one metre, guess how many metres long the longest waterslide in the world is? Lay out a 1 m measuring tape for students to visualise the size of one metre before locking in their guess. It is 1111m in length! That is over 1km (1000m)! Watch someone ride the longest waterslide in the world: youtube.com/ watch? $\mathrm{v}=\mathrm{A} 05$ XO183NVs\&a b channel=Ge zenAdam
Worded Form Sliders

Learning intention: Correctly say and write two-digit numbers Maths vocabulary: 'ty' meaning how many tens, worded form
Lesson summary: Students use supportive sliders to write the worded form of two-digit numbers (excluding teen numbers), while also making these with materials alongside the slider.

Materials:

- Worded form sliders templates from this unit's folder. The crazy colours of this template highlight the numbers that do not follow our regular language pattern (fifty instead of 'fivety').
- A4 paper with 2 small rectangles and 2 slits below these, cut using a Stanley knife.
- T-O chart or Nine frame T-O chart from this unit's folder.
- Connectable cubes.

Best set-up: Fishbowl model, then regular like-ability maths buddies.

Drawing	＿\quad＿ones	Number	
	$3+2$ ones	32 thirty－two	
$\int \pi n \\|_{0}$	$6+5$ ones	65 sixty five	
$\left.\int\right] \int^{\text {号号 }}$	$\underline{2}+\underline{5}$ ones	$\begin{gathered} 25 \\ \text { twenty five } \end{gathered}$	
Π^{0}	$1+1$ ones	eleven	
$\text { \| } 1 \text { 吕吕 }$	$1+5$ ones	$\begin{aligned} & 15 \\ & \text { fifteen } \end{aligned}$	
$180000^{\circ 00}$	$6+\underline{\varepsilon}$ ones	$6 \varepsilon^{3}$ sixty three	
品	$1+5$ ones	fifieen	
$\text { MOHTR }{ }^{\circ}$	$5+1$ ones	$\begin{aligned} & \text { fifty } \\ & \text { one } \end{aligned}$	
	$6+4$ ones	$\begin{aligned} & 64 \\ & \text { sixty four } \end{aligned}$	

Student work sample from Thomastown East PS

Modelling: Student A makes a two-digit number in the chart as tens and ones using connectable cubes, or a similar material. Set the rule that there must be at least two tens (this avoids teens numbers). Tell students that this is because teens are tricky, as they do not follow our normal language pattern (a unit specifically focused on teens follows this unit - Place Value Unit 13).

Student B says the number that student A made with the cubes:
" 3 tens 2 ones, 3t2."
Student B then uses the worded form slider to make 3 tens and two ones on the slider, which provides support to then say, "thirty-two."

Both students record using three columns:

Tens and ones	T-ones	Worded form
3 tens 2 ones	$3+2$	thirty-two (hyphen in the middle)

Student B now makes a different number and the process repeats.
So that both students can check their worded form for immediate feedback, students could access this very user-friendly website, which even includes the hyphen in the middle: lingojam.com/NumbersToWords

Tens-ones
Lesson 4

Abacus Tens and Ones

Learning intention: Make two-digit numbers and record them in place value form Maths vocabulary: ten ($\mathbf{1 0}$ ones), ' \mathbf{t} ' and 'ty' for tens, left, diagonal, across

Maths history: Introduce students to abacuses. Before phones and calculators were invented, people used abacuses like this (show an abacus to the class) to count and work out how much they

 needed to pay for food and other items they would buy at the local markets.Lesson summary: Students make two-digit numbers using an abacus, saying the number using tens and ones language and worded form.

Materials:

- Abacuses - 1 per pair of students.
- Worded form sliders made during the previous lesson.
- Tens and ones recording template from this unit's folder.

Best set-up: Fishbowl model, then regular like-ability maths buddies.
Modelling: Build on the previous lesson's work by emphasising that the abacuses are just like the connectable cubes, except they have already been connected for you on a rod. Model making a number by pushing across full rows, starting from the top of the abacus, then finally only pushing across a few on the last row you touch. Practise counting in tens, saying, 1 ten (touching the right-hand side of the pushed across row of beads), then 2 tens, 3 tens, 4 tens, 5 tens. Write down 5 t to show 5 tens or 5 full rows. Model the pattern that many of the tens numbers can literally be said as ' $9 \boldsymbol{t}$ 2.' The 't' stands for tens, that is why it is said as ninety-two.

Partner work: Start all beads from the left-hand side by tipping your entire abacus diagonally to the left. Link to positional language: left, diagonal, across. Student A pushes beads across, full rows at first then a few more from the last row of their choice. Student B then work out the number that student A made by counting, 1 ten, 2 tens, 3 tens, 4 tens, then how many ones are on the partly pushed across row, 4 tens and 5 ones, 4 t 5 , forty-five! Also record in words, using the worded form sliders for support as needed.

Emphasise holding the abacus diagonally to make all the beads slide back to their starting point, before switching roles with their partner.

	Place value chart drawing	Place value form	Standard form	Worded form
		\qquad tens \qquad ones	98	nity eight 98 90 (106)
		$\frac{9}{9}$ tens ones	49	$\begin{aligned} & \text { nity } \\ & \text { nine } \\ & 99 \\ & 90(100) \end{aligned}$
		\qquad tens \qquad ones	11	
		$\frac{5}{6}$ tens	56	\qquad
	The student is recording well as recording place in addition to rounding to extending prompt (record representations) in actio	ng the way to mak value form, stan to the nearest ten ord it more ways/u ion.	100 in red dard form (di . This is a fa using more and	(56 and 44 is 100), as digits) and worded form, antastic example of the and different
	Extension 3: Make a 3 represents a different pl place value a different	3-row abacus u place value, i.e. colour. Create	ng beads and nes, tens and nd record 3-di	d pipe clears. Each row d hundreds. Make each igit numbers in all forms:
	Place value form (rows of the abacus)	Standard (numbe	d form ers)	Worded form (words)
	$3 h+2 t+4$ ones or $3 h+2 t+4 u$	324		Three hundred and twenty-four (use Google Translate, or lingojam.com/Numbers ToWords, or Worded Form Sliders to provide support)

Students can record using the making two-digit numbers recording template from this unit's folder, recording the gallery they solved in column 1 (bag A, 7 tens 5 ones, 75). After finishing a bag, students break up all the cubes into ones or random amounts (not tens), return them back into the bag, then move to a new gallery to solve a different bag.

The teacher can record how many they put in each bag (A-Z) to enable assessment and immediate feedback throughout that session ("Let's go back to bag P. Show me how you solved it").

Tens-ones
Lesson 5

Echidnas of 10 / Race to 100 Spikes
Learning intention: Make bundles of ten, recording each complete bundle as a ten and any extras as ones
Maths vocabulary: tens (10 ones), ' \mathbf{t} ' and 'ty' for tens, place value form (tensones), worded form, standard form (in digits)
Gratitude: If you think your life is tough, imagine this echidna.
Before we watch this clip, brainstorm what could be the worst thing in the world that an echidna could be allergic to... youtube.com/ watch? $\mathrm{v}=7 \mathrm{AC}$ W0Oh9Fkk.
No matter how tough life is, we can soldier on and do our best to enjoy it, just like Matilda. Now let's make Matilda a family - a parade of echidnas (collective noun). A whole family of echidnas who are allergic to ants and native plants!

Lesson summary: Students make echidnas of ten, creating tens-ones numbers with complete echidnas (10 spikes) and spare spikes (ones).

Materials:

- For Part 1: Nine frame T-O chart.
- For Part 2: Measuring tape that spans up to 120 cm or 150 cm - one per pair of students.
- Echidna recording template from this unit's folder.
- Play-Doh.
- Craft sticks (little matchsticks or similar).

- 6 -sided or 10 -sided dice (depending on the pair of students). It is always preferable to use 6-sided for support students as it provides incidental practice of subitising.
Best set-up: Fishbowl model, then students work with like-ability buddies.
Part 1 - Tens-ones chart: Model the game with a student partner, rolling a die and placing that number of sticks on the chart in the ones column. When you reach ten (more than 9 in the ones 9 -frame), make a complete echidna of 10 spikes.
Rename the completed echidna into the tens place.

Before each turn, name your running total in its place value form (" 5 tens and 4 ones...") and worded form ("...makes fiftyfour"),
emphasising that the 'ty' stands for 'tens.' Also fill in the recording template.


```
Australian
animals real-
life link: We
are so lucky to
have echidnas
as part of our
country's
native wildlife.
Learn some
extraordinary
facts and
watch some
adaptions that
the echidna
uses to
survive in the
Australian
bush:
youtube.com/
watch?v=rIGYI
-34bul and
how echidnas
move
tremendous
amounts of
soil to improve
the quality of
the natural
environment in
which all the
other
creatures
around them
live:
australiangeog
raphic.com.au/
topics/wildlife/
2016/10/the-
secret-life-of-
echidnas/
Part 2 - Echidna races along a measuring tape:
Students race along a measuring tape, building echidnas of ten. Firstly, students just place the craft sticks along the tape 1 per centimetre. However, when students reach a tens number (10, 20, 30, 40), they roll a sphere out of Play-Doh and make a complete echidna of ten spikes. At first, students can work as a team, aiming to reach 100, 120 or 150 (15 complete echidnas) as soon as possible. However, later, students can race against one another, with student A building their echidna team on the north side of the measuring tape, and student B using the south side. The measuring tape will help students check their running total, as it will reveal their number each turn: " 7 tens and 4 ones makes 74 !" Students must say this to each other in a 'tensones format' and record using the echidna recording template.
```



```
When students reach 100, stop and question: "How many tens are in one
``` hundred? How many tens are in 110/120/150?"

\section*{Tens and ones Name}
\(\qquad\) Number

Student work sample - Thomastown East PS
This student was also recording 'how many more till I have another adult
echidna' in red pencil (how many more to the next ten).

\section*{Tens-ones The Two-Digit Birthday Party}

Lesson 6
Learning intention: Make bundles of ten, recording each digit in its place values as tens and ones
Maths vocabulary: ten (10 ones), 't’ and 'ty' for tens, place value form (t-ones)
Literacy link
Lesson summary: Students roll a 6-sided die to add guests,
- Numeracy Picture
Book: Read
Sir
Cumference and All the
King's Tens
up to the end of page 13.
On pages 10 and 11, emphasise that counting by 1 s is not a great idea because it takes so long. It is also very difficult to keep track; so if someone interrupts and you forget what you are up to, you have to start all over again! Stop midway through the book (after page 13) to start the session, then finish the story during reflection or eating time. represented as popsicle sticks, to a tens-ones T-chart. Students bundle the guests into groups of 10 whenever there is more than 9 in the ones place. Putting guests in their places - tens and ones places - ensures the guests are easy to count as they walk into the palace for the birthday in the story (left). Guests must be in their place for the palace! Materials:
- Popsicle or bundling sticks in tubs in the middle of group desks approximately 100 per pair of students.
- Rubber bands in plastic cups in the middle of group desks.
- 10-sided dice per pair.
- T-O chart from this unit's folder.
- Tens and ones recording template from this unit's folder. Alternatively: Use the Race to 120 recording template with drawing space.
Best set-up: Fishbowl model, then regular like-ability maths buddies.

\section*{Lesson introduction}

\begin{tabular}{|c|c|c|c|}
\hline & Drawing & \(t\) ones N & Number \\
\hline & ||||| \({ }_{\text {ane }}\) & 6 t 4 ones & 6 \\
\hline & ||| & 3t 5 ones & 35 \\
\hline & \({ }^{201000}\) & £ \(t_{\underline{s}}\) ones & 55 \\
\hline & 1 & \(\underline{6} \mathrm{t}\) 2 ones & 6 \\
\hline & & 4 t _ ones & \\
\hline & & 2 t - ones & \\
\hline & I|II ... & \(4 t_{3}\) ones & s 43 \\
\hline & |||||| . & 6 t ¢ ones & \\
\hline & & udent work sample & 沙然 \\
\hline
\end{tabular}

Extension 3: Once extension students reach above 120, pause there. Unbundle the number, one ten at a time, moving the bundled tens from the tens to the ones place and recording the renaming. For example, 128 is 1 h \(2 t 8\) ones (" 1 of the hundreds, 2 of the tens, 8 of the ones"). But it is also 1 h 1t 18 ones - move the ten into the ones, keeping the piles organised so students can still see each pile of unconnected tens in the ones. Record using place value form (\(\mathrm{h}, \mathrm{t}\), o notation) under the heading ' 128 .'

Ih It 18 ones
Once students reach 1h 0t 28ones, unbundle the 1h. It could also be:
Oh 10 t 280 nes. Then unbundle the tens, recording each renamed version of the number, one at a time, 9 t 38ones, 8t 48ones, and so on.

\section*{tens}

\section*{ones}

Formative assessment and exit ticket for making two-digit numbers (these can be used with students' bundled popsicle sticks from the lesson):

COMPLETE PRINTABLE TEMPLATES ALL IN THIS UNIT'S FOLDER - Enlarge to A3 on the photocopier depending on the type of bundling sticks in use.
Build 25

Build 62

Tens-ones
Lesson 7

Literacy link
- Numeracy Picture
Book: Read the remainder of Sir
Cumference and All the King's Tens.

Real-life link: Party planning. Link to a family wedding or birthday party that is approaching for you or a student. Ask the students to help you plan the party by organizing how many people you could invite depending on how many tables of ten are available at the restaurant.

Birthday Party Tables
Learning intention: Make bundles of ten to create numbers that go over 100 Maths vocabulary: ten (10 ones), ' \(t\) ' and 'ty' for tens, one hundred (10 tens), even, odd
Lesson summary: This is a follow-on from the first lesson on Sir Cumference and All the King's Tens (Lesson 6). Now that your party guests have entered the palace, they need to be seated at the party tables (ten frames). The queen has decided to sit them 10 per table, to make it easy to work out how many meals the palace chef must cook.

\section*{Materials:}
- 10-sided die.
- At least 20 printed ten frames per pair - pre-sliced so that students can easily add to their palace tables by collecting more as they need; keep these in a pile in the middle of group desks.
- Counters - 2 -sided are ideal so students can flip to the other colour when a ten is complete. Approximately 200 per pair of students. Alternatively, students can just draw dots or smiley faces using crayons or pencils on the printed ten frames.
- Tens and ones recording template from this unit's folder.

Best set-up: Fishbowl model, then regular like-ability maths buddies.
Modelling: Start from 0 guests. Roll the die, collect that number of counters (or draw that number of dots) to fill each table, one at a time. When one table is full, that is one table of ten or one ten. Grab another ten frame and continue to add guests to your party.

Record each running total, before you roll again. 't' stands for a full table of ten. So, if you have 3 full tables and 2 extra guests, it makes \(3 t 2\) ones \(=32\) Students should write: 3t 2 makes 32.
 Students should aim to work their way up to 20 tens at least - 200 guests. If this is not possible within one session, start from 80, or continue from their previous running total for a repeat session.
If students write 'ones' ensure they do not shorten this to 'o' which could confuse it with 0 . Just write the full word 'ones' or even
 'u' to represent units, which is also the vocabulary in the curriculum.

\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
Questioning: \\
- If you have 10 tens, what else can you call this - rename it or give it a nickname? 1 hundred! What will 11 tens be? What will 12 tens be? \\
- Why did we use tables of ten? Towards the end of the session, choose another number and cut the tables to that size. Now try to count the total - is it easier to count by 7s or by 10s? \\
- How many guests do you have at the moment? How did you figure that out? Look for students who are counting 10, 20, 30, 40 and support them to transition to counting their tables as 1 ten, 2 tens, 3 tens, 4 tens. It is even better if students can start to see a few tens at once (subitising or using their maths superhero eyes). For example, I see 4 tens and 4 tens, that's 8 tens, and 3 extra ones, we have 8t3! \\
End-of-session reflection: Ask students to connect their ten frames into groups of 100 (10 tables or 10 groups of 10) using butcher's paper along your classroom floor. Figure out the total number of guests in the entire class. Students could cut out their ones to connect them to another set of ones that makes 10 , using their 10 facts.
\end{tabular} \\
\hline & Support: Use the race to 40 template from this unit's folder, aiming to just build a party of 40 guests, recording each number they make by looking at how many full tables they have. Roll a 6 -sided dice to increase their frequency of recording and increase the likelihood they will stay in the same ten for a few turns in a row. \\
\hline & Extension - Applied 10 facts: Each roll, figure out how many more guests they need to finish their next full table, linking this to their 10 facts: " 5 t 6 ones makes 564 more to go" If students are fluent with this, try recording how many more they need to reach the next 100 mark of guests. \\
\hline & \begin{tabular}{l}
Extension 2 - Rounding: Each turn, round their number of guests to the nearest ten (writing this in red) by seeing whether their table is closer to full or closer to empty: \\
5t 6ones makes \(56 \longrightarrow 60\) \\
Tip: Maths is generous so we will say 5 (exactly half full and half empty) is closer to full and can round up to the next ten. \\
Question to ponder: Invite the student to reflect on why 5 rounds up, even though it is in the precisely in the middle of 0 and 10. Clue: Think about how many digits we have in our number system. \\
Answer: This is because 0 is closer to empty, as is \(1,2,3\) and 4 , so therefore \(5,6,7,8\) and 9 is closer to full, so 5 digits round back and 5 round up.
\end{tabular} \\
\hline
\end{tabular}

Tens-ones
Lesson 8

Donut Spill!
Learning intention: Experiment with using other numbers to rename, and decide which base-number is the best to use to quickly count a total
Maths vocabulary: tens (10 ones), ' \(\mathbf{t}\) ' and 'ty' for tens, place value form (\(\mathbf{t}\)-ones), worded form, estimate (thinking guess)
Link to Literacy Arnie the Doughnut:
The story of a doughnut who does not believe his life mission is to be eaten! youtube.com/ watch? \(\mathrm{v}=6 \mathrm{E} 67\) n1vZZiQ

\section*{Teacher} anecdote: I arrived at school very early this morning...and I was rewarded! As I got out of my car, I spotted a truck swerving around the corner. It took the corner too fast, and it tipped over! After checking for traffic, I ran across to make sure the driver was alright - thank goodness he was! But there, all over the road, were

Lesson summary: Students clean up a 'truck spill’ of food, imagining the maths materials are any food they like and bundling them into tens and ones to try to salvage as much as possible. Students experiment with using other numbers (not just ten) as their renaming/base number and, in the process, discover why ten is a great choice, compared to other options.

\section*{Materials:}
- Beads or similar.
- Pipe cleaners.
- Paper plates or similar.

Best set-up: Fishbowl model, then students work with like-ability buddies.
Modelling and questioning: Tip a lot of beads onto a plate or grip mat in front of each student or pair. Give students a minute to brainstorm the type of food that was spilt at their desk. For example, the beads could be donuts and the pipe cleaners are skewers. Each truck can hold ten sticks of ten, so 100 donuts.

Before the students start beading, estimate. This means making a thinking guess about how many are on your plate. Every ten minutes, ask students to stop and re-estimate, based on their total so far, and how many they think are left. Model how to explain your reasoning, for example, I have 40 and I think I have beaded more than half, so I now think it will be less than 80, maybe 70 in total.

Questioning: "How many beads/donuts should we put on each stick? What number will make it easy to count the total as we clean up this mess?" Student can start by doing ten on each, however, encourage
tens and tens of doughnuts. It had been a Krispy Krems truck and the driver rewarded me handsomely for doughnuts. What's the message of this story make sure you are at school on time in the morning, or you might miss something very, very, very important - doughnuts!

YouTube hook: Watch the results of real-life truck food spills: youtube.com/ watch?v=Rax0 gih-no8 (start from the 1 minute 20 second mark of the video and watch till the end).
students to try different numbers (not just ten), then aim to keep a running total of how many they have on their pipe cleaners. Does this make it harder or easier than using ten as your renaming number? Experiment with lots of different numbers. For example, swap plates with a friend and try renaming at 7 (7 beads per pipe cleaner). Swap with another friend and try 8 . Finally, decide which number makes it easy to work out the total.

Note: Ten is ideal because it is so easy to count by, however, students need to discover this for themselves, particularly by trying less friendly numbers and seeing the difficulties that arise from this when trying to solve a running total. This helps students understand why our place-value system is base-ten, as opposed to base-eight or base-seven, rather than simply being told to rename at ten without exploring why it is a great strategy.

Reflection question: Why do you think our ancestors chose a base-ten place value system?

Recording after each 1-minute 'donut beading' timer dings:

Follow-on - renaming: After all the beads are cleaned up, your truck spills again! Spill each pipe cleaner one-by-one to rename the number. For example, if your total was 105 , record the total as 1 h \(0 t 5\) ones. Then spill one ten, so it becomes 9t 15 ones. Then another: 8 t 25 ones, and so on until you have 105 single donuts again.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
Support: Tip a smaller number of beads onto their plate, for example, 30 or 40, rather than around 100 or 200. \\
Encourage the use of 2 or 5 as their alternate renaming number.
\end{tabular} \\
\hline & \begin{tabular}{l}
Extension: Experiment with 4, 6, 7, 8 and 9 as their renaming numbers to practise the times tables at their point-of-need. For example, put 6 beads onto each pipe cleaner and use your 6 times tables to work out the total. \\
If the student does not know the times table, brainstorm a strategy to figure it out using the bead number lines. For example, you could pretend there are 5 beads on each pipe cleaner, then add the extra. Let's say you have 8 pipe cleaners with 6 beads on each. Pretend each pipe has 5 , so \(5 \times 8=\) 40 , then add the extra 8 because there are actually 6 on each pipe, so \(5 \times 8\) \(+8=48\). So, for any 6 times table, you can solve the \(5 x\) then add one more group of the other number (\(5 \times\) other number + other number). \\
Likewise, for the 9 times tables, pretend it is a 10x, then take away one bead from each pipe cleaner. For example, for 5 pipes with 9 beads, pretend it is 5 pipes with 10 beads (50), then take away 5 beads (1 from each pipe cleaner), because there are actually 9 (not 10) on each pipe, so 45 in total. \\
For the 8 s , pretend each pipe cleaner has 2 beads, then just double double double that total. For example, let's say you have 6 pipe cleaners with 8 beads. Pretend it is 6 pipes with 2 beads. Double 6 is 12 . Now, if there were 4 beads, double 12 is 24 . Now that it is 8 beads, double 24 is 48 . So any 8 times table can be solved by thinking 'double double double' the other number in the equation. \\
Spill all the beads out again and repeat by putting 7 beads on each pipe cleaner. Repeat with 8 and 9. Do you get the same total each time? Finally, try 10 . Which number was the easiest? Which was the most challenging? Why?
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l}
Variation - Nuts and Bolts: Instead of a \\
donut or food truck spill, a Bunnings/local \\
hardware store truck/tradie's ute has \\
tipped, and all the bolts and nuts fell out! \\
There are bolts at Bunnings that can hold \\
precisely ten nuts. Instead of pipe \\
cleaners, these would be a beautiful \\
demonstration of tens and ones, since \\
students cannot fit more than 10 on each \\
bolt. If your school budget cannot provide \\
sufficient materials for a class set for each \\
pair of students, at least try to use a small \\
set for one group each day (while others \\
use the connectable cubes or pipe cleaners with beads), particularly for \\
support students, as it overcomes any chance of misconception or difficulty \\
in terms of miscounting the ten for each bundle.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
Each turn, both students record the place value form (5t 7 ones), standard form (57) and worded form (fifty-seven) of their current number using the recording template, as well as the addition number sentence that makes the total of 100. Students can use the spelling assistance chart or lingojam.com/NumbersToWords for help with the worded form. \\
When the teacher calls "time-up," the player who has the most beads on their side, wins the tug-of-war. The teacher can call this every 15 minutes and then rotate the pairs to create new tug-of-war contests throughout the session, maximising student engagement. \\
Misconception alert: Ask students to guess what would be on the other side of the string for these numbers:
\[
36+? ?=100 \quad 82+? ?=100 \quad 54+? ?=100
\] \\
After they have guessed without materials, asked them to prove their answers using the 100 -bead line. Most students will say \(36+74=100\), 82 +28 makes \(100,54+56\) makes 100 . Use the materials to reveal this misconception and for students to discover why it is in fact \(36+64,82+\) 18, and so on. Ask students to explain it in their own words.
\end{tabular}} \\
\hline & \multicolumn{3}{|l|}{Support: Use the 20-bead version of the bead lines and roll a 3-dot or 6sided dice to play a more supported version of the tug-of-war out of 20 , instead of out of 100 . Students could even play a version with just 10 beads, which is ideal to practise the 10 facts, particularly while using a \(\underline{3-}\) dot dice to keep the game competitive for longer.} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
Extension: Tell these students that each bead costs exactly 1 cent, or \(\$ 0.01\). Their goal is to get as close to \(\$ 1\) as possible, playing the same tug-of-war as the other students, but recording the beads as decimals, since 47 beads is worth \(\$ 0.47\), or 47 out of 100 , so 47 \\
Record using three columns:
\end{tabular}} \\
\hline & Out of 100 & Fraction & Decimal (money cost) \\
\hline & 47 out of 100 & \(\frac{47}{100}\)
Reading this as
"47 out of 100 " & 47 cents
\(\$ 0.47\)
0.47 \\
\hline
\end{tabular}

Exit ticket or end-of-session reflection option (templates on next pages)
Place Value Scavenger Hurl Make your own and swan with a partner
Place Value Scavenger partner
Make your own and swab with the
6 in the
ones place
9 in tens
place
More than
double your age
More than
50
Less than
20 \begin{tabular}{l}
Same digit in \\
Les and tens
\end{tabular}

Same digit in les and tens

Place Value Scavenger Hunt 9 in the
ones
2 in the
tens
0 in the
ones
More
than 50
Less
than 20
Double
your age

\title{
Place Value Scavenger Hunt -
} Make your own and swap with a partner
\begin{tabular}{|l|l|}
\hline \multirow{4}{l|}{} & \\
\hline & \\
\hline
\end{tabular}

\section*{Tens-ones Introducing Place Value Blocks}

Lesson 10
Learning intention: Make two-digit numbers using quick materials (place value blocks) where the cubes are already stuck together in bundles of ten
Maths vocabulary: place value blocks (call them this instead of the commercial name 'MAB7), two-digit numbers (tens and ones)
Incentive: If
you do well
at achieving
our learning intention this maths session, at the end, we will have free sculpture building time using the place value blocks!

Lesson summary: Students investigate the value of place value blocks (MAB), then use tens and ones blocks to create two-digit numbers, recording their findings using printed versions of the blocks.

\section*{Materials:}
- Place Value blocks - 10 tens blocks and 9 ones blocks per student.
- T-O chart from this unit's folder.
- For part 1 student recording - Printable tens blocks (pre-sliced) and Counting by 10s template all from this unit's folder.
- For part 2 student recording - Printable tens and ones blocks (presliced) and Making two-digit numbers recording template all from this unit's folder.
Modelling dialogue: "Bundling popsicle sticks and connecting unifix cubes to make tens takes so long. I just do not have time to do that, particularly if I want to make 100! I would need to connect ten towers of ten, it is just too slow! I need something faster. Can anyone suggest a quicker way? Take student suggestions. What if we had some blocks already connected to make ten? Would that work? Permanently stuck together, hmmm...Then we could make two-digit numbers quickly and easily! Each block would have a value the tens and ones - and the digit we write in each place would show those values and the worth of each block. So, in a two-digit number, the second digit would be worth the tens block, and the first would show the ones block."

Around the fishbowl modelling desk, with the class watching, try to make a total of 100 against a student partner. The teacher collects and connects unifix cubes into towers of ten, while the student partner just counts by tens with the place value blocks (MAB). Who won? What number did I have when Mila (the student) had already made 100? Which materials make it quick and easy?
Lesson sequence - Part 1: At first, ask students to count by tens as they collect each ten block and place it on a grip mat, also recording what each number looked like as place value blocks using printable versions like this:

Student work sample - Thomastown East PS

\begin{tabular}{|c|c|}
\hline Tens-ones Lesson 11 & \begin{tabular}{l}
Place Value Names \\
Learning intention: Make two-digit numbers using place value tens and ones blocks, recording these in place value form, standard form and worded form Maths vocabulary: place value blocks (MAB), tens, ones, place value form, standard form, worded form
\end{tabular} \\
\hline \multirow[t]{3}{*}{Real-life link: What was one of the first words you learnt to spell? What is one of your favourite words? For most people, it is actually their name. Today we are making our names and the place value alphabet.} & Lesson summary: Students make a letter of their name using tens blocks (MAB), then calculate the value of each letter one-at-a-time, using the mini place value chart that is the same size as the MAB for support. \\
\hline & \begin{tabular}{l}
Materials: \\
- Mini place value chart from this unit's folder. This is a Top Ten invention - a chart that shows students the value of each number and precisely matches the size of each place value block (MAB) for tens and ones. \\
- Place value blocks - 9 tens blocks and 9 connectable ones blocks per student. More for extension students, including hundreds blocks. \\
Best set-up: Fishbowl model, then students work independently.
\end{tabular} \\
\hline & \begin{tabular}{l}
Modelling: Model making the first letter of your name using the place value blocks. After making it, model drawing it one column of your maths book, using squares for hundreds (extension), lines for tens and dots for ones blocks. \\
Then take your letter apart, and place the blocks onto the mini place value chart. Place the tens on first, then the ones. Start from the top left-hand side of the chart (not the bottom). Students can then lift the final block ("Peek-aboo, what number are you?") to see the value they made. \\
"I have 9 of the tens and 6 of the ones (peek-a-boo - lift the final ones block), that makes 96 ." \\
Record your number three ways (see student work samples two pages below): \\
Place value form \(=9\) tens 6 ones or \(9 t+6 u\) (shorthand) \\
Standard form: 96 \\
Students can also practise writing the worded form using the Worded Form Sliders from earlier lessons, or the number spelling chart for assistance.
\end{tabular} \\
\hline
\end{tabular}

Student work sample focusing on just making one letter at a time, before attempting an entire name (which often involves a great deal of renaming)
Support 1: Use connectable cubes to make their chosen letter (doing only one letter at a time, recording it, taking it apart, then continuing), connecting them into bundles of ten.
Support 2: Use only tens blocks to make their letters.

Extreme support: Use popsicle sticks and only use up to 9 sticks if the student is not ready to progress to two-digit numbers yet:

Extension 1: When making letters with only tens and ones blocks like the rest of the class, also use renaming to figure out all the ways they could have made that letter. For example, if you made a letter using 5 tens and 2 ones.

Put the 5 tens and 2 ones in the T-O chart:

Put on your x-ray eyes to cut up the tens into ones, seeing the other ways you could have made the same number - renaming it!

You could have also used: 4 tens and 12 ones

You could have used: 3 tens and 22 ones

Renaming 35 student work sample - use 'x-ray eyes' (upgraded from your subitising maths superhero eyes) to see inside each ten ("How many ones are inside/what is each ten worth?").

Follow-on: Students could also make place value animals or stick figures, using just the tens and ones blocks, then place these onto the mini place value charts to ascertain the value of each:

Place value self-portrait

Suitable extension lessons are detailed in the unit focused on ThreeDigit Numbers (Place Value Unit 15), but could easily be varied to only involve tens and ones blocks if needed as a mid-range extension.

\section*{Tens-ones}

Lesson 12

PLACE VALUE BLOCKS - COMPLTETE SERIES OF LESSONS
Learning intention: Make two-digit numbers using place value tens and ones blocks, recording these in place value form, standard form and worded form Maths vocabulary: place value blocks (MAB), tens, ones, place value form, standard form, worded form

\section*{Games link:}

Relate this session to the game of hide-andseek. Invite students to tell stories about their best hiding spots. Tell a made-up story about yours, such as a time when you hid for so long in such a fantastic spot that your family had dinner without you! Once, someone in my family hid in the heating vent and got stuck for about 10 minutes when trying to get out because they had contorted their body to such an extent. Another family

Lesson summary: Students roll two dice, make a two-digit number using tens and ones blocks on the mini place value chart, then pick up the final block to work out or check the total: "Peek-a-boo, what number are you?"

\section*{Materials:}
- 9 tens and 9 ones blocks per student.
- One blue 10 -sided dice and one red 10 -sided dice (or dice that are two colours, for example, red represents tens and blue represents ones).
- Mini place value chart from this unit's folder.
- Mini place value chart recording templates from this unit's folder.

Best set-up: Fishbowl model, then regular like-ability maths buddies.
Introduce the place value blocks: For a while now, we have been working on tens and ones - two-digit numbers. So far, what materials have we used? Brainstorm with students (popsicle sticks, cubes, ten frames).
Introduce the new material - place value blocks. Give each student a ten block and ask them to check how many cubes are in it. Give them another ten block, does this have the same number? How about this block? Is it still ten? Are you sure? You might even decide to trick students, pretending that you have hidden one block that does not have ten in it. Ask them to hunt for it for 5 minutes, then reveal there is no such block - they always have 10!
Modelling: Model by starting with the tens, laying these down on top of the mini place value chart, horizontally starting from the top left-hand side (1). Then add the ones below the tens, again from the left-hand side. Pick up the final block, saying, "Peek-a-boo, what number are you?" to reveal the total. You can try to figure out the number first, counting the tens, "1 ten, 2 tens, 3 tens, 4 tens, then counting the ones, 7 ones. 4 tens and 7 ones makes 47 ." Check by lifting the final block. Students can record as:
\(4 t 7\) makes 47 or 4 tens and 7 ones makes 47 forty-seven (continue to use the Worded Form Sliders or spelling assistance chart for support)
member hid in a cupboard that stored all our books and boardgames, which stoppled onto their head as they were hiding, and they immediately yelled,
"HELP! HELP!"

Student work sample

Students compete against one another in a game of chance. Roll two dice, then choose which die will be their tens and ones, aiming to make the largest/greatest number possible.

Build the numbers using tens and ones place value blocks on the mini place value chart.

Compare their total to their partner's, with the crocodile greater than/less than sign eating the larger pile of fish.

Record the numbers in tens and ones, as well as standard form (digits), then show the crocodile as a greater/less than sign in their maths books (see next page).

Great er then or le
\[
\begin{aligned}
& 31 \times 5255 \% 21 \\
& 64>5443 \geqslant 42 \\
& 55>5155 \geqslant 1 \\
& \begin{array}{llll}
3 & 3 & 5 & 51 \\
5 & 6+60>4+40
\end{array} \\
& 55216691 \\
& 31<61 \quad 2+10<9 t 90 \\
& 63<66 \\
& 4282 \\
& 3252 \\
& 5364 \\
& 6363 \\
& 63 \% 22 \\
& 51244
\end{aligned}
\]

Students use one or two 1 hundred blocks as their gameboards. Students collect tens and ones to race to reach 100 (later 200 to ensure students can bridge over 100) before their partner. Roll 2 coloured dice, for example, the red for tens and blue for ones.

Red die rolled ' 1 ' so add 1 ten, blue die rolled ' 2 ' so add 2 ones. What is your number?
Ih It 4 ones or IIt 4 ones makes 114
Record the place value and standard form each turn, before rolling again.
Support: Just race to 100 against a like-ability partner using one die (rolling tens only).
Extension: Round each number before your next turn to its nearest ten (is it closer to a full row or empty on your final row) and also to the nearest 100 (is the whole block closer to empty or full).

Template 1 or Template 2

Template 1 or Template 2

Extension: Figure out all the possible ways to make 1 hundred. Use the hundred block as their base. Experiment with different ways of combining tens and ones on top of it. For example, I see 3 groups of 3 tens and 1 more ten \(=3 \times 3 t+1 t=10 t\) or 1 h

Year 1 extension student work sample

Tens-ones
Lesson 13

\section*{Magic Number Reveal}

Learning intention: Count by tens and ones, describing a running total of a twodigit number in its place value and worded forms
Maths vocabulary: ten (ten ones), ' \(\mathbf{t} / /\) ty' for tens, place value form, worded form
YouTube hook:
Today, you are becoming magicians! The most important part of being a magician is the 'reveal' time. You are going to hide a number and slowly reveal it. To get in the right frame of mind, watch these virtual magic tricks: youtube.com/ watch? \(\mathrm{v}=2 \mathrm{KL}\) XRTKLXvo

Lesson summary: Students make a number together, for example, 79. Students then mix up some of the tens and ones, so that there are a few tens, then ones, then tens (in no particular pattern). Students use an A3 piece of black paper to gradually reveal the number, as 'number magicians.' As each new block appears, the student whose turn it is needs to say the running total.

\section*{Materials:}
- Place value blocks (MAB).
- A3 black paper (or any colour).

Best set-up: Fishbowl model, then regular like-ability maths buddies.

Reveal one part at a time and try to keep track of the running total, usually by focusing on the tens first, then the ones. Also think about which place value changes and which will stay the same.
Modelling: In pairs, students make a number together, for example, 79 as 7 tens blocks and 9 ones. At first, place all 7 tens on the left and all 9 ones on the right. However, students then mix up some of the tens and ones, so that there are a few tens, then ones, then tens (in no particular pattern). Draw lines between each section of blocks. Each section should only contain one type of block (tens or ones, but not both).
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
Next, students use an A3 piece of black paper to gradually reveal the number, as 'number magicians.' \\
As each new block appears, the student whose turn it is needs to say the running total. For example, the first block is revealed as a ten, student A says, " 1 ten, ten," (saying the place value form, then the worded form). \\
The next blocks revealed are two ones, so student B says, " 1 ten 2 ones, twelve." \\
The next reveal is 3 tens. Student A says, " 4 tens 2 ones, forty-two." The next reveal is 2 tens. Student B says, " 6 tens 2 ones, sixty-two." The next reveal is 5 ones. Student A says, " 6 tens 7 ones, sixty-seven." This continues until the entire total is revealed. \\
Key tip: Which place value is changing for this turn? Which place value will stay the same as the last turn? Why?
\end{tabular} \\
\hline & Support: As blocks are revealed, place them on the mini place value chart, assisting students to read the new number just by adding the newly revealed block to the existing total that is shown on the chart. \\
\hline & Extension 1: Include hundreds and thousands in the reveal. \\
\hline & \begin{tabular}{l}
Extension 2: Work out the value of the blocks that are currently still hidden (not simply the value of the revealed blocks). Encourage students to use a jump strategy or split strategy to solve this. \\
For example, let's say the total is 79 , and 35 is currently revealed. Well, 3 tens and 5 ones are revealed, so we need 4 more tens to get to 7 t because \(3 t+4 t\) makes 7 t , so 4 tens are under the paper. There are also 4 ones hidden, because 5 ones and 4 ones would make 9 ones. \\
Students could record like so using a number line (jump strategy): \\
Or students could record like this (split strategy):
\end{tabular} \\
\hline & Extension 3: Use coins to represent decimals (\$1 as wholes, \(10^{\circ}\) as tenths, transparent counters as hundredths). \\
\hline
\end{tabular}

Tens-ones
Lesson 14

Place Value Paint Sliders
Learning intention: Make two-digit numbers using clues, then record these in drawings, place value form, standard form and worded form
Maths vocabulary: ten (ten ones), ' t ' and 'ty' for tens

\section*{Real-life}
link:
Discuss students' favourite colours. How many colours do you think there are in the world? Okay, yes there is purple, green, red, and so on. but what if each colour is slightly different because of how dark or light it is? What about the different shades of colours? So, how many do you think there would be now? Infinity! Who has helped paint the house or their room before? Paint samples are pretty cool and come in so many

Lesson summary: Students make tens and ones numbers using paint place value sliders.

\section*{Materials:}
- Paint colour samples from Bunnings or similar - use a Stanley knife to cut the rectangular or square holes. Slice and laminate the place value paint slider templates from this unit's folder. Slide through the holes.
- Place value blocks - 9 tens and 9 ones.
- T-O chart to organise their place value blocks.
- If recording in words, use the Number spelling assistance charts from this unit's folder. Make two-digit numbers recording templates as well.
Best set-up: Fishbowl model, then regular like-ability maths buddies.
Modelling: Students work in pairs. Student A makes a number using the paint slider. Student A keeps this hidden from student B , but reads it out, "I have 5 of the tens and 4 of the ones." Student B makes the number using place value blocks. Student A then reveals the number on the paint slider to student B and checks their work.

Students can record using the make two-digit numbers recording template from this unit's folder. Make two-digit numbers Name \begin{tabular}{|l|c|c|}
\hline Drawing & \({ }^{\dagger}\) _ones & Number \\
\hline & \(\begin{array}{l}\text { Example }\end{array}\) & 32 \\
& \(3+2\) ones & \(\begin{array}{c}32 \\
\text { thirty-two }\end{array}\) \\
\hline
\end{tabular}
Alternatively, fold 4 columns in their books to record, as shown here:
\begin{tabular}{|c|c|c|c|}
\hline Tens + ones & Drawing & Number & Worded form \\
\hline \begin{tabular}{c}
5 tens + 4 ones \\
(the clue)
\end{tabular} & \begin{tabular}{c}
IIIII.... (what \\
you made in \\
your T-O chart)
\end{tabular} & 54 & Fifty-four \\
\hline
\end{tabular}
different colours and shades.
Sometimes, I just collect a few from Bunnings because I just love a particular colour, or for craft projects. Today they are your maths tools.

Encourage students to set up their ones and tens so they can see them easily. How do you like to see 6 ? 3 and 3 , so set up the 6 tens as 2 groups of 3 . How do you like to see 7 ? As 5 and 2, so set it up so you can see the 5 and 2 as 7 using your maths superhero eyes (subitising).

\section*{Questioning:}
- How many tens and ones are in that number?
- What if we made that number using just ones? How many would we need?
- What number would it be if we added one more ten? Check by sliding the tens place one digit forward. So, instead of counting forward 10 ones, we can just go up by 1 in the tens.
- What number would it be if we took away one ten? Check by sliding the tens place one digit back, using the paint place value slider. So, instead of counting back 10 ones, we can just go back by 1 in the tens.

\title{
I am expanding! \\ Standard form (digits): \\ Drawing:
}

\section*{tens ones}

\section*{\(+\)}

Worded form (words):

Tens-ones
Lesson 15

\section*{Birds on the Wire}

Learning intention: Make two-digit numbers using an abstract representation for a complete ten, working out and recording the running total in its place value, standard and worded forms
Maths vocabulary: ten (ten ones), 't' and 'ty' for tens, place value form, standard form, worded form
YouTube
hook:
Watch this amusing YouTube Clip Birds on the Wire, which also touches on themes such as kindness and karma:
youtube.com/ watch? \(\mathrm{v}=\mathrm{k} 2 \mathrm{P}\) J6T7U2eU\&a b channel=lo ng island ic e tea

Lesson summary: Students use coat hangers and pegs to represent tens and ones. At each set of ten wooden pegs, students rename the ten single pegs to make one ten, represented by a coloured peg.

\section*{Materials:}
- Coat hangers, wooden pegs and coloured pegs. Cheap bulk class sets are available at Bunnings, Kmart or Target. These resources are often also used for commutativity (building an addition using pegs on either side, then dramatically turning it around) and partitioning (all the ways to make the numbers 3 to 9), so it is worth having at least one class set in the school.
- Birds on the Wire recording template.
- Post-it notes to label the coat hangers.
- 10-sided dice and grip mats. Best set-up: Fishbowl model, then regular like-ability maths buddies.

Tens and Ones Name_
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Drawing} & Place value & Standard and \\
\hline T & 0 & 2 t 3 ones & 23 \\
\hline \(\pi\) & \% & & \\
\hline & & \(20+3\) & \begin{tabular}{l}
twenty- \\
three
\end{tabular} \\
\hline
\end{tabular}

Tens-ones
Lesson 17

Guess my number...
Learning intention: Problem-solve using strategic questions to work out your partner's mystery two-digit number
Maths vocabulary: strategic (thinking) questions, even/odd, more/greater/larger than, less/fewer/lower than
Literacy link - Numeracy Picture
Book: Read
More or Less by S .
Murphy, a book about guessing numbers to avoid being dunked in a bucket of water at the school fete.

\section*{Become a} detective:
This session, you are going to become a detective and use clues to figure out your partner's mystery number! Who has played battleship before? Well today, we are searching for a mystery

Lesson summary: Students try to guess each other's mystery numbers using strategic questions.

\section*{Materials:}
- Laminated 120 charts (or place these in write and wipe boards) so that students can cross out eliminated options, as they ask each other questions.
- Note: Many interactive versions of this game only allow 'greater/less than question types,' so reserve these for reflection or whole-class teamwork at the end, as the ICT versions are more closed and less rich in nature than the questions students can ask one another in real-life.
- Whiteboard markers.

Best set-up: Fishbowl model, then regular like-ability maths buddies.

Modelling: Using their 120 charts, students play the number version of the game Battleship. Students choose their number and secretively record it on the back of their chart (or on a postit note, hidden from their partner). Taking turns, they ask each other questions about their number, crossing out eliminated options on their chart, until they guess their partner's number.

Model effective questions to ask using a whole-class game of 'teacher versus all students.' When versing the students, model these questions:

- Is your number more/greater/larger than 60? Is your number smaller/less/lower than 60 ? Half the 120 chart can be eliminated with this single question.
- Is your number odd or even? Another half of the options are eliminated! Extension version of this question: Is your number a multiple of 2? Is 2 a factor of your number?
- Does your number have any hundreds?
- Does your number have 5 tens?

Midway variation: Limit the number of questions to 10, then 5, before students must have their final guess at the actual number.

Tens-
Ones
Lesson 18

\section*{One More/Less, then Ten More/Less}

Learning intention: Work out one more and one less for any two-digit number, then ten more and ten less by exploring and applying place value patterns (what changes and what stays the same when you add or subtract a ten) Maths Vocabulary: more, less, next, before, tens place, ones place, pattern
Game: Use a hundreds flip board

Flip all squares to blank, then flip one number up. Students answer what number they think will come next and will come before that number. Interactive charts are also available here: toytheater.c om/120chart/ (120 version available, where you can black out some numbers).

Lesson summary: Students work out one more/less using the 120 chart. Students put a blue counter on any starting number, for example, simply by dropping their blue counter anywhere onto the 120 chart. Their partner then works out one less (red counter) and one more (green counter) than the starting number.
Students then practise working out ten more and ten less than their starting numbers. During part 1 of ten more/less, students use peek-aboo flaps on a 120 chart. During part 2, students use place value blocks on the mini place value charts, recording one more/less and ten more/less. Throughout, students aim to discover the critical place value pattern (when adding/subtracting tens, the ones stay the same).

\section*{Materials:}
- 120 charts.
- Blue, red and green counter for each pair.
- One more/less boxes recording templates.
- Ten more/less parts 1 and 2: Ten more/less recording templates.
- Mini place value charts.
- Place value blocks (MAB).

Best set-up: Fishbowl model, then students work with a like-ability maths buddy, or independently.

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Challenge the students: \\
By the end of this session, your goal is to come up with a cool pattern that works when you need to add just one place value (e.g. 1 ten, 1 hundred) or subtract just one place value from a number.
\end{tabular} & \begin{tabular}{l}
Modelling - one more/one less: Model using a giant 120 chart (enlarge to A3 on the photocopier). Place giant counters on the chart (or kinder circles with the middles cut out), using blue for the starting number, green for one more and red for one less. \\
If you have a painted 100 or 120 chart in an outside area of your school, take students to this. Ask one student to stand on the starting number with a blue sash (from the P.E. storeroom). Then ask the 'one less' student (red sash) to stand on one less, and the green sash student to stand on the number that is one more. Model that the 'one more' student simply starts where the blue student is and takes one step forward. Likewise, the one less student stands where the blue student is and takes one step back. Do this in your head, start at 56 and go one back - what number comes just before you say \(56 ?\) \\
Model what happens when we are at 9 - it goes to the next ten, and what happens at 0 - it goes back to the ten that came before. \\
Questioning: \\
- How is one more/less with large numbers similar to what you learnt practising one more/less with small numbers (Place Value Unit 8)?
\end{tabular} \\
\hline & Support 1: Use an A3 120 chart that is cut off at 30 - a large 0 to 30 chart to practise one more/one less with the red and green counters (blue as the base number). \\
\hline & Support 2: When using the mini place value chart during the next part, start by focusing on 'one more, one less' first just using the ones blocks. Concentrate on building the numbers on top of the mini charts by figuring out how many tens and ones to collect, showing this in place value form. F or example, "I made using 3 of the tens and 4 of the ones": \(34=3 t 4 u\). \\
\hline
\end{tabular}

Place Value Scrolls
Students use calculators and split each grid page into 4 columns, with these headings:
Page 1:
\begin{tabular}{|l|l|l|l|}
\hline+10 from & +10 from & -10 from & -10 from \\
\hline 8 & 62 & 529 & 1204 \\
\hline Page 2: & +100 from & -100 from & -100 from \\
\hline+100 from & 1902 & 2205 & 1003 \\
\hline 806 &
\end{tabular}

Students start with column 1 (page 1), typing in ' 8 ' to the calculator then using the constant function to push \(+10====\). Record the answers down their column, and underline the place value that is changing each time.

What place value keeps changing? What places are staying the same? Aim to notice patterns, particularly that when you add or subtract tens, the ones stay the exact same.

same.

Ten more/less - Part 2: Students make their starting number on the mini place value chart with place value blocks. Push an extra ten onto it from the top of the chart. Students record 'ten more.' Now remember to go back to your starting number make it on the mini chart by getting rid of the extra ten you just added. Now take away ten by pushing the blocks up to remove a

ten. Record 'ten less.' Also record one more/less.

\section*{Critical questions and pattern for students to discover:}
- What place is changing? What place is staying the same?
- What is an easy way to solve 10 more/+10 or 10 less/-10?
\begin{tabular}{|l}
\begin{tabular}{l}
Modelling instructions for \\
ten more/less on the mini \\
place value charts: \\
Model making a 'base \\
number,' for example 34. \\
1. Make 34 on top of the \\
chart by collecting 3 \\
tens and 4 ones. Lift \\
the last block, \\
underneath it says \\
'34' so you know you \\
have made it \\
correctly.
\end{tabular} \\
2. Add a ones block. What do you have now? Lift and check: 35! Record \\
it in the 'one more' square. \\
3. Now go back to your base number: 34. Always go back to your base \\
number, don't forget!
\end{tabular}

Extension 2: As an extra challenge, a student could place their starting number in a different box. For example, start with ' 42 ' in the bottom box, rather than in the centre, and solve all the other boxes from there.

Year 2 student work samples

Support: Simplify the template if students cannot remember to go back to the base number, but are ready to attempt ten more, ten less:
\begin{tabular}{|c|c|c|}
\hline Ten Less & Base Number & Ten More \\
\hline 65 & 75 & 85 \\
\hline 23 & 33 & 43 \\
\hline \[
72
\] & \[
82
\] & 92 \\
\hline \[
50
\] & 60 & \[
70
\] \\
\hline 1 & 1 & \\
\hline 19 & \[
29
\] & \[
39
\] \\
\hline \[
0
\] & \[
8
\] & \[
28
\] \\
\hline \[
79
\] & \[
89
\] & \[
99
\] \\
\hline \[
65
\] & \[
75
\] & \[
85
\] \\
\hline \[
27
\] & \[
4
\] & \[
37
\] \\
\hline \[
4
\] & \[
14
\] & \[
24
\] \\
\hline
\end{tabular}

Follow-on: Make a number using place value blocks, for example, 42. Then roll the place value more/less die template from this unit's folder. Add 10, so it becomes 52. Try to work out the pattern - it just goes up by 1 ten! Can you solve it without using the blocks (just mentally)? Try in your head only, then check your answer with the materials after each roll.

\(\left.\begin{array}{ll}\text { Tens-ones } \\ \text { Lesson } \mathbf{1 9}\end{array} \begin{array}{l}\text { Find your number's home } \\ \text { Learning intention: Problem-solve and use what you know about the values of two- } \\ \text { digit numbers to put them in their correct places on the 120 chart } \\ \text { Maths vocabulary: horizontal, vertical, diagonal, tens place, ones place, ten } \\ \text { more/less, one more/less }\end{array}\right]\)
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
Rules of the game: When students roll their dice, they can choose which number to use as tens and ones. This makes the game more strategic as, towards the end, students will be aiming to roll certain numbers to finish a connect 4 by making a particular number. Students can achieve connect 4 by making 4 numbers of their own colour that connect vertically, horizontally or diagonally. Once partner A has claimed a number, for example 97 in blue, partner B cannot claim it, so it cannot form part of their connect 4. \\
Modelling: Question students about potential strategies to work out the location of each two-digit number they roll. At first, this can include counting down the right-hand side column by tens, 1 ten, 2 tens, 3 tens, 4 tens, then counting forward by ones, 123456 - 4t6! Once a few numbers are already on the board, use ten more/less strategies to solve the location of each new number. For example, if 46 is on the board and you roll 58, start at the 46 and add ten more (1 row down) and 2 ones (2 square across). Emphasise that you expect to hear this kind of reasoning from students as you roam, and that they must explain this kind of strategy (or another good strategy they used to locate the position of that number) to their partner, in order to score each square. \\
Model your own ten more/less reasoning during an example game with a student partner, using a giant blank 120 chart around a demonstration desk (enlarge the template to A3 size for modelling purposes). For example, if you rolled 1 and 4 , you could make 14 or 41 . Let's say I want to make 41 , if 31 is already on there, it will just be one ten more (one row bigger or down) than 31. If I rolled 57, and 54 is already on the board, it is just 3 more ones in the same tens row. If I rolled 87, it is 3 tens more than 57 (3 rows down). \\
Caution: Always check where your partner has put a number, because if you both start putting numbers in the wrong places, the game will restart, and no one will win that round. \\
Link to angles vocabulary: Discuss the meaning of vertical, asking students to stand up straight like marching men. Discuss the meaning of horizontal, linking it to the wings of a plane flying across the horizon (arms outstretched). Show diagonal as anything in between the two, with a slant, like the lines in the letter 'x.' Play a Simon says game, saying, "Vertical!" (students stand straight), "Diagonal," (students slant their arms like fighting ninjas), and so on, with students acting out the moves for each vocabulary word called out. \\
Questioning: \\
- How are you going to figure out where that number goes? What strategy did you use? What numbers that are already on the board helped you / could have helped you work it out? \\
- If 61 is here, what will be here? (point to one row down, or one row up, or three rows down, or one row down and a few across)?
\end{tabular} \\
\hline
\end{tabular}

Support: Give these students the filled in 120 chart (from the following pages to ensure the size matches) as well as the blank chart, to use to double-check where they placed a number before continuing. Alternatively, write in the tens numbers and numbers that end in \(5(0,5,10,15)\) onto their chart for extra assistance, particularly during their first game.
Extension: Use the charts on the following pages, depending on their level of extension. These extension charts span from: 101 to 220, then 421 to 540, then 971 to 1090 , finally into decimals 0.01 to 1.20 .

The power of this game is in students communicating to each other about how they worked out where a number should go. Encourage students to watch each other closely and, if their partner does not volunteer an explanation, actively ask:
- "How did you think about it?"
- "What other numbers (that are on the board already) did you use to help you?"
- "Can I tell you how I did it - my strategy was a bit different..."

This game can become quite competitive and excitingly close in terms of who wins, so this is ideally continued as an ongoing warm-up following the main session. Any lesson that is easy and quick to set-up, and incorporates a good amount of oral interchange between maths buddies, can become a warm-up.
Warm-ups should prioritise points-of-need that have been hard to achieve or that take a long time to master with students, for example, subitising, partitioning (both in terms of all the ways to make the numbers 3 to 9 , and the tens-ones concept), skip-counting and (in years 3-6) times tables and related division facts. These skills are most effectively mastered by using long-term dedicated periods of repeated practice in class - daily warm-ups! Daily warmups are not purely to build fluency (drill sheets or the like) - they are best used to build a depth of understanding of the most challenging mathematical conceptions.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Real-life \\
link: \\
Discuss mazes students have visited in the past. Read about some of the most elaborate mazes in the world, including one in Australia! \\
booking.co \\
m/articles/w \\
orld-most- \\
magnificent- \\
mazes.html \\
You could \\
also discuss \\
Maze \\
Runner if \\
students \\
have any \\
interest in \\
this series. \\
Well, today, \\
you are \\
running a \\
maths \\
maze!
\end{tabular} & \begin{tabular}{l}
Variation: Number maze gameboard from DET available at: \\
education.vic.gov.au/Documents/school/teachers/teachingresources/disciplin e/maths/assessment/placevaluegame.pdf. Students aim to fill the boxes of this maze in numerical order by rolling two 10-sided dice to make tens and ones numbers. Each player has their own gameboard. The player can choose which number to create, i.e. 6 and 4 can create 64 or 46 . Players record their numbers in the most appropriate position between 0 and 100. If a number cannot be placed in its ascending order, the player misses a turn. The winner is the first to fill all places in their correct order. This makes the game quite strategic in terms of where a student chooses to place a rolled number, as they can easily make their board very difficult to complete. \\
Alternatively, students could just fold an A4 page vertically into eighths, 100 on the top, 0 at the base, and fill the 6 remaining empty boxes. This is easily differentiated by changing the gameboard to 0 to 1000 and using three 10 -sided dice, or 0 to 10000 and using 4 dice, or even 0 to 1 by students rolling decimal numbers using a counter as their decimal point. \\
Extension level strategies: Encourage students to use division and skip-counting to help them. For example, in the main template (above right), there are 15 boxes between 0 and 100 , so what is 100 shared between 15 ? Well, it is roughly 7 (6 and \(2 / 3\)), so each number should be about 7 ones apart. For instance, if you rolled 21, this would ideally be positioned in box 3 . Work out the ideal location for each number they roll either by using the times table (\(7 \times\) what \(=\) close to the number I rolled), or skip-counting (skip-count by 7s until I am as close as possible to the number rolled). Each round, change the number of boxes students are using in their maze by crossing out or adding a few, or asking them to draw their own maze with a specific number of boxes, which will then alter the calculations they will need to perform.
\end{tabular} \\
\hline
\end{tabular}

Follow-on, more challenging version: Cut out a piece of a 120 chart, stick it in your maths book and try to figure out the numbers that would go around it:

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & 120 \\
\hline
\end{tabular}

I20 chart to double check after you have written your number in its place (hold against a window with the blank chart on top of this):
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{tabular} 10

Keep one dice set on the number I, then roll two others beside it.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 101 & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & 220 \\
\hline
\end{tabular}

Roll 6 dice, choose 3 to use aiming to connect 4 before your partner:
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 421 & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & 540 \\
\hline
\end{tabular}

Roll 12 dice, choose 3 or 4 to use aiming to connect 4 before your partner:
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 971 & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & 1090 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 0.01 & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline
\end{tabular}```

[^0]: Lesson 19 Blank Chart Series Pages 164-179

