

Developmentally Sequenced Materials-Based Mathematics Early Years Package

Sequential units with hands-on mathematics for Early Stage 1 and Stage 1.

Real-life, hands-on mathematics linked to students' interests with engaging hooks.

Active, visual and creative learning with photographs of teacher modelling and openended sessions that develop deep understanding, reasoning, problem-solving and fluency - no worksheets!

Created, tried-and-tested in Australian classrooms in challenging regions with outstanding teacher feedback and student gains.

Easy-to-use: supports teachers and maximises planning time. Created by Australian maths leaders and teachers.

Hands-on maths with more than 500 new lessons for K-2.

Extension and Support:
Pre-planned enabling and extending prompts for each rich task.

Diagnostic assessments that target points-of-need and require students to explain their strategies.
Assessments link directly back to the sequential units to make data actionable. Also includes quick formative assessments within units.

High-impact, high-relevance ongoing professional learning through daily modelling tips, professional reading summaries, misconception alerts and 1000 photographs of lessons in action.

Place Value Unit 14: Rounding and Estimation 1 of 500 Sequential Lessons for K-2 students

Recommended for Stage 1. New NSW Maths Syllabus - Stage 1 (A) Representing whole numbers A - Represent the structure of groups of ten in whole numbers: Estimate to the nearest ten.

MA1-RWN-01 and MA1-RWN-02
and Round
Stage 1
Lesson 5
Game-based learning: Who has played snakes and ladders before? Today, we are playing the maths version of snakes and ladders!
Play an online version with the class during eating time the day prior to this session:
https://m.two playergames. org/play/snak es-andladders.html. Or play on a school gameboard outside during eating time, if one is available like so:

Abstract

Estimate Snakes and Ladders Rounding Learning intention: Round to the nearest ten by seeing which ten you are closer to along a number line. Maths vocabulary: round (which ten are you closer to), nearest ten Lesson summary: Students race to 100 along a measuring tape (using it as a number line), moving to the rolled position and then sliding up to the next ten if they roll 5-9 on the 10-sided die, but going back to the previous ten if they roll 0-4. Do not tell students this - let them figure it out by literally seeing which ten they are closer to as they play the game.

\section*{Materials:} - 100 or 150 cm measuring tape stuck to each desk with Blu Tack - one per pair. - Thin bundling sticks (preferable) or popsicle sticks to mark each ten along the measuring tape - put a stick at $0,10,20,30$ up to 150. - Small counters (one per student) to mark their position, such as a ones place value (MAB) block or any counter less than 1 cm in width. - 10-sided dice - one per pair.

Best set-up: Start with the 'digits vs. numbers' whole-class discussion below. Set up the materials on desks before the atdesk teacher modelling. Students work with their like-ability maths buddy. Modelling: Write all of the digits on the board. Make a distinction between digits and numbers. If maths had an alphabet, digits would be the letters, and numbers would be the words. Letters make words, digits make numbers.

Digits follow certain patterns when we round them to the nearest ten - today your challenge is to figure out the pattern that each digit follows and why. Tip: Don't 'give away the gold' by telling students straight away that 0-4 stay in the same ten and 5-9 rounds up! Let them work this out.

Pointing to all the digits on the board "Which digit looks the most round?" Some students will say 8 but most will say it is 0 . Therefore, all our rounding numbers will end in zero - they will all be tens numbers. Ten is an important number in our place value system for renaming, but for rounding too!

Record after each roll, or risk being pushed back to the start of the measuring tape number line!
Support: Use a giant number line along the floor to use their own bodies to figure out which ten they are physically closer to, racing to 30 instead of 100, then restarting back at zero once either player reaches 30 .
Extreme support: Play an actual game of snakes and ladders to focus on one-to-one correspondence, rather than rounding. Use this context to practise counting to 100 (saying each number they land on) and also subitising (using maths superhero eyes to see the number they rolled on the dice, without needing to count the dots one-by-one). If needed, slice off the gameboard so it ends at 20,30 or 40, close to that pair's upper counting limit. A printable snakes and ladders gameboard is in this unit's folder.

Reflection: Which digits were the snakes (kept you in the same ten)? Which digits were the ladders (always went up to the next ten, rounded up)?

Students can then invent new versions of the game themselves, changing the fractions they are rounding to each game. Set up the new number line each game, which involves a fraction to decimal and percentage conversion. To work this out, think about an even share of 100 cents or $\$ 1$.
For example, for rounding to the nearest quarter, set up the sticks by thinking about 100 cents or $\$ 1$ shared between 4 friends (shown below). Each friend receives 25 cents, so one rounding stick is placed at 25 , another at 50 , another at 75 , and the final at 100 .

Provide students with coins and mini figurines to work this out:

If you are rounding to the nearest third, split the $\$ 1$ between 3 friends. Use plain counters to represent single cent coins.

Before playing their new rounding game, choose dice (or make a post-it note cup with numbers in it to pull out) that make each version progress at a fair pace (not too fast and not too slow). The choice of dice, or which numbers to put in the post-it note cup, will depend on the location of the rounding sticks, which show the fraction to decimal to percentage conversions.

Student work sample for the decimals, percentages, fractions snakes of ladders extension version of the game

Division Unit 2: Create equal shares with materials 1 of $\mathbf{5 0 0}$ Sequential Lessons for the Early Years

Recommended for Stage 1. New NSW Maths Syllabus - Stage 1 (A) Forming Groups A Recognise and represent division: Model sharing division by distributing a collection of objects equally into a given number of groups to determine how many in each group.
Describe the part left over when a collection cannot be distributed equally.
MA1-FG-01

Equal Sharing Spikes

Shares Learning intention: Make equal shares and record matching division
Stage 1 sentences, including any remainders.
Lesson 9

Real-life

 link: Meet the most resilient echidna in Australia Matilda, who is allergic to ants: link. Matilda and her keepers show that, if you are a problemsolver and resilient, you can tackle almost any problem you come across in life.Dreamtime story hook: YouTube clip made by year 9 students about how the echidna got its spikes: youtube.com/ watch? $\mathrm{v}=\mathrm{ZP}$ 4ap0VjNfQ

Maths vocabulary: shared between \div, starting number, remainder
Lesson summary: Students practise creating equal shares with spikes for echidnas. Students push craft sticks into Play-Doh spheres, ensuring that echidna has the same number to avoid a jealous joust! Materials:

- Small craft sticks or toothpicks, which are very cheap (approximately \$3 for class sets of 1000 from Officeworks or craft suppliers).
- Play-Doh.
- Shared between recording templates from this unit's folder.
- Ten frames from this unit's folder.

Best set-up: Fishbowl model, then students work with their maths buddy.
Modelling: Model scooping up some spikes with one hand and putting the starting number in the ten frames. Whole-class chant, "When we share, we start with a lot, we end with a little each (emphasise the alliteration of lot and little)." Just like subtraction, division makes your number smaller and you start with the big number, because you need lots to be able to share it out. However, unlike subtraction, the share must be fair. Always make and record your starting number before sharing it out, for example, 24.

Now roll out how many echidnas you are going to use. Take a pinch of PlayDoh and rotate it between the palms of your hands. Record your number of echidnas in the template too: 24 shared between 2 gives _ each, before you start sharing out the spikes. Share the 24 spikes onto 2 echidnas. Record the answer to the shared between sentence, 24 shared between 2 makes 12 spikes each, and the number sentence under it, as shown below. Next, try sharing 24 spikes equally between 3 echidnas, then 4 , then 5 .

24 shared between 3 gives 8 to each $24 \div 3=8$

Drawing

10 shared between 2 gives 5 to each

Drawing

8 shared between 2 gives is to each 8 $2=4$

Drawing

16 shared between 4 gives 4 to each Drawing:

20 shared between 2 gives 10 to each
Template available
18 shared between 3 gives 6 to each

Drawing

18 shared between 2 gives q to each

L8 shared between 3 gives 6 to each
18 shared between 4 gives 4 to each ${ }^{r_{2}}$
L2 shared between 5 gives 3 t σ each ${ }^{\text {" }}$ 18 shared between $\underset{18 \div 6 \times 3}{6}$ gives 3 to each 18 shared between Z gives 2 to each ${ }^{n}$

18 shared between 8 gives 2 to each ${ }^{r_{2}}$ $18 \div 8=2^{a}$

18 shared between 9 gives 2 to each $18 \div 9=2$
18 shared between 10 gives \perp to each ${ }^{h_{3}}$

All the ways to share 18 spikes

Reflection: Refer to the start of this unit - students create worded division problems about this lesson's materials for the final 10 minutes of the session: "I had 20 spears. I saw four echidnas walking along. Each echidna got 5 spikes!"

Student work sample - Note that the number of spikes remains unchanged (24 spikes, shared between a progressively increasing number of echidnas), which provides deeper questioning and patterning opportunities for students and the teacher focused on how the number of shares impacts upon the quantity that each group receives.

This also ensures students can independently work out what to do next, without needing equations on the board or from a sheet - the lesson and the mathematical pattern evolves naturally by the use of the materials.

	\qquad shared between \qquad makes \qquad on each Support 1: Use the visual recording template (shown here), which is similar to the recording templates used throughout the first division unit. Support 2: Keep the starting number of spikes the same and figure out all the ways to share that same total between varying amounts of echidnas. For example, what are all the ways to share 12 ? Give these students 12 sticks and remove all other sticks, so they cannot add or subtract any from their set starting number.
	Extreme support: Practise making numbers, rather than sharing them. Roll the 6 -sided dice and make that number in spikes. For example, if they roll 6, make a 6-spike echidna. Later, roll 2 dice and put both numbers on the same echidna to practise addition. For example, rolled 3 on the red die and 5 on the green die: 3 red spikes + (and) 5 green spikes $=$ (makes) 8 spikes altogether, $5+3$ $=8$. Record using the _and_is_ template from Addition Unit 1.
	Extension 1: Encourage these students to predict answers using skipcounting or any known multiplication facts, before physically sharing out the spikes. For example, for 24 spikes shared between 3 echidnas, if you know 3 equal groups of 8 is 24 or you know $3 \times 8=24$, you might guess that 24 shared between 3 echidnas will give each echidna 8 spikes. If you don't know the times table, skip-count by 3 to guess the answer (how many times did you need to skip-count by 3 to reach 24). If you know 5 threes is 15 , then start skip-counting from there, 5 threes is 15,6 threes 18 , 7 threes 21,8 threes is 24 .

Extension 2: Record the division using multiple representations, such as an array and record the fact family (particularly the inverse multiplication fact):

Extension 3: Write the matching fraction fact. For example, $24 \div 3=8$ is the same as saying, 1 out of 3 equal parts of 24 is 8 , because this echidna has 1 of the 3 shares of 24 spikes, and so does this one, and so does this one.
So, $1 / 3$ of 24 is 8 , or $1 / 3 \times 24$, again reading this as 1 out of 3 parts of 24 is 8 or, more abstractly, as one third of 24 is 8 .

That means 2 out of 3 parts of 24 is 16 (2 out of the 3 echidnas sharing 24 have 16 spikes) and $3 / 3$ of 24 is 24 (the whole collection/all of them).

Place Value Unit 4: Digit Formation 1 of 500 Sequential Lessons for the Early Years

Throughout Kindergarten/ES1 to build muscle memory and avoid reversals. New NSW Maths Syllabus - Early Stage 1 Representing Whole Numbers - Connect counting and numerals to quantities: Represent numbers as quantities to at least 20 using objects (such as fingers), number words and numerals.

MAE-RWN-02 need to reverse, go sideways). Use their pointer finger on top of a green counter to start with for each digit.

For all digits: Start at the top - at the green light! For ' 4 ' and ' 5 ': Start at green. Stop and lift at red. Restart slowly at amber.
Digit Formation Songs - PowerPoint in this unit's folder, sing one around a whole-class circle. Students trace their digit road of the day as they sing:

YouTube hook: Cars cartoon movie trailer youtube.co m/watch? $\mathrm{v}=$ SbXIj2T- uk

Modelling: Students sit on the floor with their digit roads and green counter. Model starting the counter from the green dot on each digit template. Sing together as a whole class. The teacher can model with an A3 version at the front, leading the 'digit choir.'

Ask students to join in the song after you have sung it through a few times. Watch students as they make their way around the digit in sync with the class (lifting the green counter and putting it back to the starting dot on your, "Go!"). Do not allow students to slide backwards up the digit - they must lift their counter to restart!

Students return to their
 desks with the digit, whisper singing the song to themselves as they trace the entire back page using pencil. Teacher modelling YouTube for the tune of the songs: youtube.com/watch?v=BOThXyG svk

Top-to-bottom formation: Did this digit start at the top or the bottom? When you are riding your bike, is it more fun to start from the top of the hill or the bottom? The top! ALL digits are the same - they all like being at the top of the hill and riding their bike down! Where do you put food in your body? The top or the bottom? Digits are the same, don't feed your digit from its bottom!

Traffic lights show where to start: Explain that the dots are like traffic lights. Green means go. Red means stop and lift your pencil. Yellow means slowly, so you slowly start with your pencil again. For the digit 4, green is the starting point, red is where you lift your pencil, yellow is where you draw the last part of the digit.

Rubber bands for right and left directionality: Students can also wear left and right wristbands, red on the right and lemon-coloured for the left. Students could wear these many times throughout the year to build right/left awareness. These mostly help with lessons on positional language, but also assist with instructions about which way to move their hand. For example, even
 though all digits work from top-to-bottom, some move left first (like 6, 8, 9), while those that are most commonly reversed move right first (like $2,7,3,5$).

Fractions Unit 1: Understand fractions as 'out of'

 1 of 500 Sequential Lessons for the Early YearsRecommended for front-loading in Stage 1 for the real-life foundation for fractions leading into Stage 2.

Out of
 concept
 Stage 1
 front-load
 Lesson 2

Literacy

Link -
Numeracy Picture
Book: Read
The Very Hungry Caterpillar by Eric Carle.

Fraction Caterpillars

Learning intention: Say and write 'out of' sentences. Understand fractions using 'out of language (not just as halves, quarters and eighths).
Maths vocabulary: out of, fraction (parts of a whole or parts of a collection), numerator (how many of that colour you have), denominator (how many parts it has altogether), spheres, circles
Lesson summary: Students say and write 'out of' sentences about pompom fraction caterpillars, then other evolved creatures. When ready, students also record the fractions using numbers and words.
Materials: Pompoms and post-it notes.
Giant teacher modelling materials: Kinder circles to make giant caterpillars around a whole-class circle or desk.

Best set-up: Whole-class circle model with kinder circles, followed by a short at-desk demonstration with pompoms.
Then students work independently, making their own animals and progressing to new fractions when they are confident in naming their current creature.
Creatures 'evolve' according to the instructions on pages 14-16. This encourages students to master each fraction to upgrade to the next creature.

Real-life hook:
Have you heard of towel animals? Show students this link. Well, today, we are going to make something equally fun and crazy: fraction pompom animals!

Stage 1 student work sample

Student work samples

Interesting
fact:
Ground
feeding birds are more attracted to camouflage colours, such as brown, grey or green.

Extension 2: Compare the two fractions/colours in their creature and decide which is the largest and smallest fraction. If a bird was diving down from the sky to eat your spider, would it aim at the red or green part? The green because it is $6 / 8$ versus $2 / 8$, so draw $6 / 8>2 / 8$ like a bird's mouth about to eat the larger fraction of your spider.
This 'bird's mouth' is what maths calls the greater/less than symbol.
Extension students can make a greater/less than sign using two popsicle sticks, or even just a peg with a googly eye stuck on both sides.

Extension 3: Identify whether each fraction is more or less than half. Is $3 / 4$ (3 out of 4) more or less than half of your butterfly? More, because half of 4 is 2, so $2 / 4$ is half and $3 / 4$ is more than half. Is 2 out of 6 more or less than half? Less than $1 / 2$, because $3 / 6$ would be equal or equivalent to half, since 3 is half of 6 . Record this as $2 / 6<1 / 2$, and $3 / 4>1 / 2$, since the greater/less than sign (or mouth) eats the larger fraction.

This becomes one of the strategies to use to solve comparisons of fractions in the upper years. For example, compare $4 / 9$ to $3 / 5$, which is larger?

- $4 / 9$ is less than half, since 4.5 is half of 9
- $3 / 5$ is more than half, since 2.5 is half of 5
- So, 3/5 is larger than $4 / 9$ (without needing to create visual models).

Cross-content link - graphing: Guide the class through this graphing investigation one step at a time.

Each student uses 10 or more pompoms with a range of different colours. This becomes the data.

Create a bar graph of your pompoms (setting up the pompoms sideways into rows):

Turn it into a column (standing up) graph by rotating the grip mat:

Make the column graph into a dot graph (simply remove all the pompoms from the columns, except the top pompom in each column).

Arrange the pompoms into a circle and draw lines into the centre (using matching colours) to create a pie graph:

Remove the pompoms and shade in the relevant colours for each part.
Draw a hollow circle in the middle of your pie graph to transform it into a donut graph.

Place Value Unit 6: Subitise (conceptual/flexible) 1 of $\mathbf{5 0 0}$ Sequential Lessons for the Early Years

Recommended for warm-ups throughout ES1. New NSW Maths Syllabus - Early Stage 1: Representing whole numbers - Instantly name the number of objects within small collections: Instantly recognise (subitise) the number of items in small groups of up to four items without counting. Identify the number of items in different arrangements. MAE-RWN-01

Subitise ES1 Lesson 8	Maths Superhero Eyes! Learning intention: See numbers in different ways (without counting). Key vocabulary: maths superhero eyes (subitise), "I see...I see...I see...," parts, total (altogether), combinations (ways to make), rotate
Superhero hook: If you were a	Lesson summary: Students show and explain to their partner how they saw each number. Students use their fingers to circle around each part of the plate, then listen to how their partner saw the same collection.
superhero, what superpower	Note the strategic arrangements that make use of colour. Plates can show numbers in their regular formats (like on 6-sided dice), but should also show lots of irregular formats (numbers that are not in their usual dice format):

seeing numbers, not counting
$1,2,3$, but just seeing 3! Let's practise it! Everyone put on your superhero eyes! Students can motion to their eyes and use their fingers to create mini 'goggles.' Consider bringing in your own real goggles as an extra prop for effect; for example, skiing or swimming goggles.

Materials:

- Plates, approximately 10 per pair of students, 100 in total.
- Sticker dots in different colours, ideal for visual learners in particular. Alternatively, printable versions of dot cards are in the unit folder:

- I see, I see, I see recording template from this unit's folder.
- Optional extra prop for the hook: Superhero goggles of some sort - ski mask or swimming goggles to excite students about 'maths superhero eyes.'

Creating the plates tip: When creating the plates, aim to create some that look similar to dice arrangements, but most that do not. For example, show 7 as 4 black dots in the corners and 3 in the middle, or a long line of 5 red dots and two black dots, or 6 in black dots like on dice with 1 extra red on the side. See the photographs from the first page and following pages for multiple examples.

Creating the plates tip: In the extension/support sections, it indicates how you may wish to vary the number of dots and type of arrangements for some plates. Make differentiated sets using different coloured plates (for example, mid-level plates are green, support plates are pink and extension are blue).

Creating the plates tip: If possible, create these plates as a team or using education support officers for assistance, so that you can reduce the workload and maximise their use in warm-ups throughout the year, by rotating the materials from class to class. The plates are very durable, lasting for years.
Modelling: Emphasise seeing numbers over counting them. You don't need to count 1, 2, 3, 4 if you can see 3 and see 1 , then see 4 altogether. Show students how to do the finger movements, moving their pointer finger around the 3, saying, "I see 3," then moving their finger around the 1, saying, "I see 1." Finally, move their finger around the whole plate/total/circumference, saying, "I see 4!" Student A does this as student B watches.

Next, student B can do the same plate, showing their partner how they could see the number differently. "I see 2 , I see 2 , I see 4 !" always using the finger movements. If student B is struggling to see it another way, try turning or rotating the plate.

Critical: Do not emphasise speed at first. Emphasise explaining thinking. Otherwise, students simply learn to count very fast, not subitise.

Most students complete 2 or 3 double-sided pages of the recording template, working on this for about 30 minutes of the session.

Use your super hero maths eyes! Name:

"I see 4,
I see 4, I see 8 !"

Encourage students to see the collection using large parts. For example, avoid students saying, "I see 2 , I see 2 , I see 2 , I see 2 , I see 8 ," as this is not an efficient way to see 8 . Instead, encourage the student to see 4 and 4 , or 6 and 2 . If this is not possible, the student may need to work on smaller plates, until they become confident at subitising 4 as a set of 2 and 2, before making the leap to subitising 4 twice and seeing this as 8.

This provides a much deeper, richer understanding of the numbers to 10 , far beyond just learning single-digit addition equations by rote. This is because students start to authentically trust and, after consistent warm-up practice at subitising over two terms, instinctively know that 4 and 4 makes 8 . It builds the foundations for partitioning the numbers 3 to 9 , doubles and the 10 facts. It also greatly assists with subtraction, particularly the later developmental step of fact families. For example, if you trust that 3 and 5 makes 8 , then you can more easily form the connection that 8 take away 3 makes 5 , and 8 take away 5 makes 3 .

Rotating the plate can help create more ways to see. The best way to see is usually by combining the biggest part possible to make solving easier (for example, 6 and 1, as the total is easiest to solve in that way). Avoid "I see 1, I see 1, I see 1...," or "I see 2, I see 1, I see 1, I see 2," as it becomes too hard to solve the total at the end of all this.

Extension 1: When making the extension plates, create sets with up to 12 dots in mixed arrangements, including combinations with three colours. Also include some multiplicative thinking; for example, 12 as 2 sets of 6 with 1 set in red and 1 set in black, or 12 as 4 sets of 3 dots in coloured groups.

Extension 2: Use two ten frames and two-sided counters to investigate all the ways to make a teen number, such as 12. Change the colours by flipping the counters, creating many different combinations that make 12.
Record using the and is templates from this unit's folder.

Extension student work sample

Extension 3: Grab a handful of craft sticks and place these on a blank page. Both partners estimate the total, then bundle them into groups of 10 with rubber bands in a T-O chart, to make the total easy to subitise.
Use the finger movements to show how they saw it, "I see 2 tens, I see 3 ones, altogether I see twenty-three."
Use the number spelling assistance chart to record in its worded form too. Extra challenge: How far off was your estimate from the total?

Subtraction Unit 7: Use Fact Families to Subtract 1 of 500 Sequential Lessons for the Early Years

Recommended for Stage 1. NSW Maths Syllabus - Stage 1 (B): Combining and separating quantities B - Represent and reason about additive relations: Model how addition and subtraction are inverse operations with concrete materials, drawings and diagrams. MA1-CSQ-01

Fact
Families
Stage 1
Lesson 2
History and growthmindset link: Read the following Wonderopolis article with students wonderopolis. org/wonder/wh o-invented-sticky-notes. The inventor of post-it notes invented them by mistake! He was trying to invent a super strong glue, but he invented a very weak one by mistake! He essentially failed. That mistake he made was so good that he invented one of the world's most popular products! That shows mistakes are great opportunities!

Post-it Note Fact Families

Learning intention: Use addition to help you solve subtractions. Maths vocabulary: fact family, turnaround fact, addition number sentence, subtraction number sentence, horizontal, halfway mark

Lesson summary: Students use post-it notes to create fact families.

Materials:

- Post-it notes distributed in small piles to the middle of group desks.
- Two 6-sided dice per student.

Best set-up: Fishbowl model with A3 yellow paper as your giant post-it note examples, followed by a normal-sized example in a support student's maths book. Tip: Always use support students' maths books for your modelling. This way, the examples are at the top of their page. Students then work independently.
Modelling: Create a few A3-sized examples together around a modelling desk. First fold the post-it vertically in half. Unfold the post-it and slice horizontally to its halfway mark, so that it can flap like so:

Stick the post-it on the left-hand side of your page. Roll two 6-sided dice. Put the dice on the two flaps and write the total on the other side of the post-it note. These are the 3 numbers that live in your fact family! Write the equation beside it, " 5 and 3 makes $8, " 5+3=8$

To celebrate taking a risk and the great things that can happen when you are brave enough to make mistakes, we are doing post-it note maths today!

Now switch the position of the dice. Students could use the catchphrase, "Change places!" from a hook experienced in the previous Addition Unit to build their understanding of turnaround facts / commutativity (youtube.com/watch?v=8tYXfssLOSM).

Switch the dice to write the other addition number sentence that lives in this fact family: "3 and 5 makes $8, " 3+5=8$

As you remove the dice, draw the dots on the flaps.
For subtraction, start with the total (8) and fold over one of the flaps.
Say the sentence as you do it, "8 take away 3 leaves 5," $8-3=5$

For the final subtraction fact, start with the whole again (8) and cover it with the other part (5).
Say it as you do it, " 8 take away 5 leaves $3, " 8-5=3$
Questioning:

- What does 2 and 5 make? If you know 2 and 5 makes 7 , do you know 7 take away 2? Do you know 7 take away 5 ?
Encourage students to use a fact family/think addition strategy to solve subtractions, moving on and progressing from a counting back strategy, particularly if they are still reliant on their fingers to subtract (Subtraction Unit 3). Use the wording: For 7 take away 5, think 5 and what makes 7 ? If particular students are struggling this with concept, return to tasks from Subtraction Unit 4 (counting on/difference between concept) and Addition Unit 4 (partitioning the numbers 3-9).
Support 1: Play fact family hide-and-seek instead with a like-ability partner: If the instructions to create the post-it note flaps are too much for these students, use the Missing Part Cards (shown below) from this unit's folder. These are similar to the post-it note flaps, but remove the step-bystep student creation element of the task:

"What's hiding?" Write the matching addition and subtraction sentence for that hide-and-seek card:
$5+2=7 \quad 7-2=5$
Support 2: Use 3-dot dice (with 1 on two sides, 2 on two sides and 3 on two sides) to keep their fact families within 6 . If unavailable, adapt any dice you can write numbers onto to create 3-dot dice.

Subtraction Unit 1: Physical take away actions 1 of $\mathbf{5 0 0}$ Sequential Lessons for the Early Years

Recommended as the first introduction to subtraction for Kindergarten/ES1. New NSW Maths Syllabus - Early Stage 1: Combining and separating quantities - Model additive relations and compare quantities: Separate and take away part of a group of objects to model subtraction. Use concrete materials or fingers to model and solve subtraction.

MAE-CSQ-01

Take Subtraction Squish
 Away

ES1
Learning intention: Make a starting number, take away/squish part of it and work out what is left.
Lesson 1 Maths vocabulary: starting number, squish, take away, how many are left, sphere

Link to the arts: Today, we are using Play-Doh for maths!
Show students this gallery playdoughactivities.co m/articles/si mple-playdoughcreations.ht ml of wonderful yet reasonably simple creations.

Lesson summary: Students make balls/spheres using Play-Doh. Students place these in a frame, starting with a 4 -frame, later working up to 6, 8 and 10 frames. Students then squish some of their Play-Doh balls and figure out how many are left, recording this on the template.

Materials:

- Play-Doh.
- 4, 6, 8 and 10 frames. Print the ten frame templates from this unit's folder, slicing into 4,6 and 8 frames as needed. If possible, laminate each frame for durability, as these are used throughout K-2 number units.
- take away leaves recording templates.

Best set-up: Whole-class model balloon pop (shown above) from the warm-up section, with students recording using the take away leaves
 pop, start with 4 balloons, pop some, all record together on the take away recording templates (students sit around the whole-class circle with pencils). Then restart with another set of 4 balloons. Following balloon pop, model the below lesson with Play-Doh balls around a demonstration desk. Students work independently, or in pairs, after that.

Link to technology: A short stop motion clip that students could try to create their own version of during ICT time: youtube.com /watch? $\mathrm{v}=\mathrm{yi}$ 1Kt8REHE4

Make 6

6 squish 3 leaves 3

Modelling: Model the actual making of the Play-Doh balls by holding your hand flat (ask the class to chorus the word 'horizontal' three times as they hold their hands flat) and roll the ball under your flat hand against the table. Model recording each step, one at a time, on the take away leaves templates, as you act out each part.

Setting up the session for success and '5 minutes of free create time' at the end: Today is about using the Play-Doh to learn about take away. When we use fun materials for maths, you need to use them sensibly and in the right way. That way, we can keep having fun and doing exciting activities as part of our maths learning! We will have 5 minutes of playtime at the end, BUT if you start using the PlayDoh for something other than maths in the lesson time, I will need to take away the awesome 'free create time.'

For example, after students make the 4 balls in their 4-frame, instruct them to write ' 4 ' in the first spot on the recording template. This is your starting number. Chorus the subtraction whole-class chant: "We start with a lot, we end with a little."

When the student squishes/takes away balls, model writing down how many they squished in the middle spot of recording template. Ensure that students squish the balls till they are flat, so they can look back and it will be obvious. Mention that, sometimes, they can choose to squish zero.
"How many balls are left?" Encourage students to see how many are left using their maths superhero eyes (subitising), rather than counting them, if possible. Practise using the recording template together as a class, particularly as part of the balloon pop warm-up game (warm up section), which can flow straight into this session using the same recording template.

Oral language: Emphasise for students to whisper as they work:

$$
\begin{aligned}
& \text { "I have } 4 . " \\
& \text { "I squished } 3 \text {." } \\
& \text { "I have I left." }
\end{aligned}
$$

Practise this language together, while acting out a few examples at a desk.

Questioning:

- How many balls/spheres did you start with?
- How many did you squish?
- How many balls/spheres do you have left?
- If you start with 4 , could you squish 5 ?
- What happens if you squish zero?
- What happens if you squish all the balls?
- Do you have more or less than what you started with? Is it always less?

Extension 3: Roll a 20-sided dice and 6-sided dot dice to generate the take away problem to solve using the materials, or mentally first, then using the materials as a checking device (concrete calculator):
I2 take away I leaves II
II take away I leaves 10
II take away 3 leaves 1
I take away I leaves 6
6 take away 2 leaves 4
4 take away 3 leaves 1

Subtraction Unit 4: Difference between 1 of 500 Sequential Lessons for the Early Years

Recommended for Stage 1. New NSW Maths Syllabus - Stage 1 (B) - Combining and separating quantities B - Represent and reason about additive relations: Represent the difference between two numbers using concrete materials and diagrams.

MA1-CSQ-01

Difference Super Mario - Count on to solve difference between
 Between Learning intention: Work out the difference between two numbers
 Stage 1
 Lesson 1
 YouTube hook: Relate difference (subtraction) by counting on from the smaller number.
 Maths vocabulary: difference between, subtraction number sentence
 Lesson summary: Students figure out the difference between singledigit numbers by jumping their figurine from one number/platform to the next. Count the number of jumps they had to make to land safely.

 between to video games like Super Mario, where characters need to jump between one platform and another, accurately figuring out how far forward they need to jump or the 'difference between' the platforms to avoid going back to the first level. Use this link youtube.com/ watch? $\mathrm{v}=\mathrm{WM}$ UuEdSmxCEto watch a YouTube of a Super Mario game where he jumps between platforms, then transforms

- Two figurines per pair (mini Pokémon to mirror the first YouTube where Mario transformed into a Pokémon) or any animal counter.
- 0 to 10 number line from this unit's folder - one per pair, laminated.
- Difference between recording template from this unit's folder.
- For whole-class modelling: A4 number line templates are available in this unit's folder, laminate and connect with string to make a large durable number line for all future whole-class number line modelling. Best set-up: Model using a giant number line with students, then model at a desk. Students work with their regular like-ability maths buddy.
Modelling: Model the concept on a giant number line at the front of the room. Students roll two giant dice. For example, the students roll 4 and 9. Student A puts a kinder circle or post-it note on 4. Student B puts a kinder circle on 9 . These are the 'platforms' or numbers in the subtraction number sentence. "What's the difference between 9 and 4?"

into a

Pokémon.
This is a very similar, longer clip so you could just choose your favourite few minutes, where Mario needs to be very careful to accurately figure out the distance between each platform, particularly in the fire section: youtube.com/ watch? $\mathrm{v}=04$ CfkUZ6N20

In this extra YouTube hook option, a video game designer has created an augmented

With a subtraction number sentence, you always record the larger number first, for example, 9 - 4. However, to figure out the answer, you can start your character from the smaller number and just count forwards.

Now we want to figure out how far you need to jump to get from one platform to the other, or the difference between the numbers. Students step as they count on to work out the difference between the two number platforms.

Whole-class modelling with enlarged materials

Following this, model at a desk using student materials.

reality
version of
Super Mario,
bringing it to
life in a park:
youtube.com/
watch?v=QN
$95 n N D t x j o$
Alternative
hook: Street
parkour
video clip to
emphasise
the 'jump the
difference'
strategy:
youtube.com/
watch?v=2vf
oyY9Ishl
Don't do this

First: Both partners put their counters on the number they rolled.
Second: Write the two numbers in the template, recording the bigger number first, since subtraction always starts with a lot and ends with a little.

Third: Jump your character from the smaller number to the bigger number, counting each jump. If the student was solving the difference between 7 and 4 , they would start at 4 , then say, "1, 2, 3" until they land on the 7 platform.

Fourth: Read the number sentence back to your partner from your recording sheet, using 'difference between' vocabulary: "The difference between 3 and 0 is 3 ."

See the video in this unit's folder of the lesson in action.

Common misconception 1: Point out that you cannot just look at the number of spaces between the numbers, because that will end up one short, and your player will not make it all the way to the platform. For example, the difference between 6 and 3 is not 2, even though you can see there are 2 numbers (4 and 5) between them. You need to make it all the way to the 6 from the 3 , so it's 3 jumps for your character, or 3 counts forward.

Common misconception 2: Another common misconception is that students tend to start counting from the first number/platform, before they do a jump. Students sometimes even jump their character up in the air and count 1 on the starting number. Does Mario just jump up and stay where he is? Or does he jump forward? You don't need to start counting on your current platform, because that's your starting point. You start counting from the first jump forward that your character does.

Questioning:

- If you both roll 4 , what is the difference between your numbers?
- Does it matter whether you start from the bigger number and count back, or start from the smaller number and count forward?
- Without the number lines, is it easier to count back or count forward? Most students will prefer counting forward, as that is their first learned counting sequence. The aim of this unit is to ensure students can use the strategy of counting forward to solve difference between situations, rather than only seeing subtractions as 'take away' scenarios that can be solved using counting back alone.

Lesson in action in Stage 1

This can become quite challenging for numbers such as 62 and 45 . For example, the students may jump their character 2 tens forward (from 45 to $65)$, but they are now beyond the target number/final platform.

Model for extension students to use a 'jump forward tens, step back ones' strategy for these type of problems. Ultimately, the goal is for students to do this without the 120 chart. Accordingly, remove the chart when students are ready to attempt this jump the difference strategy in their heads. Mentally, the aim would be to think: Start at 45.2 tens forward, 65,3 ones back 62 ! So I did 20-3 = 17 was the difference!

This provides students with better strategy options than always thinking of subtraction only as 'take away.' For most students, it would be a worse option to solve this particular problem using a jump back strategy, by starting at 62 , then jumping 4 tens back, then another 5 ones back to take away the entire 45. Therefore, the 'difference between strategy' (or 'jump the gap strategy') is ideal when the two numbers in a subtraction are fairly close together.

Extension student work sample
Note: The student's first example placed the numbers in the wrong position. The teacher provided immediate feedback in green pen, then the rest of the examples were correct. The power of teacher roaming during the lesson and immediate feedback!

Addition Unit 4: Partition the Numbers 3 to 9

 1 of 500 Sequential Lessons for the Early YearsRecommended for Kindergarten as a daily maths habit and ongoing home learning link alongside nightly reading for literacy. New NSW Maths Syllabus - Early Stage 1 Combining and separating quantities - Identify part-whole relationships in numbers up to 10: Create, model and recognise combinations for numbers up to ten.

MAE-CSQ-02

Partition ES1 Lesson 1	Ninja Number Sliders Learning intention: Work out all the combinations or ways to make the same total. Maths vocabulary: ways to make (combinations), parts, total (all/altogether), turnaround (halfway turn, 180 degrees), left, right
Teacher professional learning:	Lesson summary: Students use a bead number slider to discover all the ways to break apart a number and make its total. Teacher note: Partition means to break a number into parts (not necessarily equal parts).
Dianne Siemon - The Big Ideas in Number, drawing lines in the sand https://www.y outube.com/ watch? $\mathrm{v}=\mathrm{nPL}$ WAzKOQSQ	Materials: - Beads. - Pipe cleaners or dowel rods. Pipe cleaners are the easiest to source and can be sent home for continued practice:
Ninjago theme: https://www y	- and is recording template from this unit's folder. Best set-up: Model at a demonstration desk, then students work independently to be able to progress to each new total at their own pace.
outube.com/ watch? $\mathrm{v}=\mathrm{j} \mathrm{Uk}$ zGE7CIds	Modelling: Model your own example number slider, focusing on all the combinations you can discover that make one total. Put 5 beads on the slider. Push some to the right and some to the left. " 4 and 1 makes 5 ."
Now you are going to become number ninjas!	Turnaround the slider (a halfway turn or 180 degrees) so that now 1 and 4 makes 5. That's the turnaround fact! Push the beads back to the centre and create another way or combination that makes 5 - " 3 to the left, 2 to the right makes 5." Turn the slider around - "2 and 3 makes 5." Instruct students to make as many combinations as they can before upgrading to a new total. Don't forget about 0 ! 0 and 5 makes 5 . Turn it around: 5 and 0 makes 5 .
The power of an idea: Read about the Beads for Wildlife Program, run by Werribee Zoo, which has raised	Questioning: - Can you make it another way? What's a new combination? - Can you see a pattern? 8 and 1 makes 9, 7 and 2 makes 9,6 and 3 makes 9,5 and 4 makes 9,4 and 5 makes 9,3 and 6 makes 9 . Some students will describe this as: "I can see that every time one side loses a bead, the other has an extra bead, and it's still the same number." This is a great foundation for later compensation strategies, used mostly for addition, subtraction and multiplication in years 3-6.

over one million dollars to support communities in Kenya and helped to save an endangered species of zebra at the same time: zoo.org.au/b eads/\#:~: :text $=$ Zoos\%20Vi ctoria\%20is \%20working \%20with,artis ans\%20are\% 20paid\%20e ach\%20mont h

Home learning link: At the end of this series of sessions, allow students to take their bead number slider home, with a photocopy of their best work.
Students can continue to use the bead sliders at home to practise creating different combinations that make the same total.

Whole-class modelling: For extra visibility, at the start of the session model with sport balls, shifting these to either side of a long piece of string or rope. When fishbowl modelling, it is often beneficial to supersize your materials for extra visibility, but then also model with students' materials so it looks the same as what they will be experiencing when they return to their desks.

Lesson in action and student recording

2 and 2 makes 4

Turn it around (turnaround fact): I and 3 makes 4

Ongoing extension 1: For any students who already know all the ways to make 3 to 10, focus on fact families (learning all the subtraction/take away facts from 3 to 10). For example, if a student knows 4 and 5 is 9 , does the student use this trusted fact to solve 9 take away 4 and 9 take away 5 ? Assess students on taking away from 3, then 4, then 5, but stop if they start using counting back, rather than a 'known fact family strategy' ("Because I know 4 and 5 is 9 , I also know 9 take away 5 is $4 "$).

Ongoing extension 2: For students who know both all the ways to make and all the ways to break (take away), using efficient strategies for addition and subtraction to 10 , make the sliders up to 20 , starting at 11 , or whichever number for which they are not yet using efficient strategies.

Ongoing extension 3: Focus on multiplicative strategies instead, using an ongoing warm-up such as https://mathigon.org/multiply, signing up for a free teacher/student account. This assists extension students as it firstly displays equal groups, then arrays, then factors, using this free virtual resource focused on long-term memory, retention and mastery. Introduce these multiplicative strategies with extension students as these arise in their daily practice warm-up, in order to avoid skip-counting:

Strategies for the doubling family	Strategies for the tens family	Other strategies
$\times 2$ Double the other number	$\times 10$ Place value pattern/power of 10	$\begin{aligned} & \times 3 \text { Double }+ \text { group } \\ & \text { example } \\ & 3 \times 6 \\ & \text { Double } 6=12 \\ & +6 \text { more }=18 \\ & \hline \end{aligned}$
x4 Double double the other number example 4×7 Double $7=14$ Double $=28$	$\times 9$ Place value pattern - group example 9×7 Think 7 tens $(7 t)=70$ Take away 7 $=63$	$\times 6$ Think x3 then double OR think $\times 5$ + group example 6×7 Think $3 \times 7=21$ Double it $=42$
x8 Double double double the other number example 6×8 Double $6=12$ Double $=24$ Double $=48$	$\times 5$ Place value pattern of 10 then halve it $O R$ halve it then place value pattern of 10 example 5×8 Think 80 ($\times 10$) then halve it $=40$ Think half of 8 is 4 , then $\times 10 /$ tens $(4 t)=40$ Think the analogue clock minute hand, at 8 it is 40 minutes	x7 Use commutativity so just remember 7×7; the rest you already know! Memory strategies for the hardest facts: 6×6 : Think half 6 is 3 , so it's 36 ! 7×8 : What comes before 7 and 8,56 ! 8×8 : Count by 2 s backwards, 64!

Teaching Tips at the Start of Every Unit Place Value Unit 15 - Three-Digit Numbers Teaching Tips and Unit Launch

Abstract

NSW Syllabus - Stage 1 (A) Representing whole numbers A - Represent the structure of groups of ten in whole numbers - Full links at the start of each unit. MA1-RWN-01

Whole-school language tip: For students, call the MAB/base-ten resources 'place value blocks.' This language provides a direct link to the content (each block represents a place value) and avoids using the far more abstract commercial name (MAB - multi-attribute blocks).

Begin by introducing each block, particularly the hundred block, as this may be the first time many students have seen these.

- What would you name each of these blocks? Do not tell students the names of each block. Simply give them one of each and ask them to come up with a 'maths nickname' for each block in 5 minutes. Extra prompt: Trace around the block using your grid page, or try to count what is in it to figure out what would be a sensible name for each block:

This student was starting to count the hundred block by ones, then changed strategies and started counting how many tens it had.

Questioning:

- How many ones are in a ten?
- How many tens are in one hundred? How many ones are in one hundred? (It may surprise you how many students need thinking time for this question).

- How many hundreds do you think are in one thousand? Collect a thousand block and check. Misconception alert: Students sometimes think there are 6 hundreds in one thousand, because there are 6 faces in the cube. Avoid this by counting with a hundreds block horizontally up its layers (shown to the right above). Also place a thousand block on one side of a balance scale, and 6 hundreds on the other side - it does not balance! Then make it 10 hundreds on the other side -it balances! 10 hundreds $=1$ thousand.

Definitions of the forms in which students may be requested to represent numbers

Standard form: The number is written in digits, for example, 45. For numbers in the ten thousands or above, it is the Australian convention to use a space: 10005 (not a comma).

Worded form: The number is written in words, for example, forty-five. The grammatical convention is to use a hyphen between tens and ones for two-digit numbers: twenty-four.

Support tools for worded form:

- Google translate (with both languages set to English) will read numbers out loud for students (use headphones to reduce classroom noise levels).
- lingojam.com/NumbersToWords: This website converts numbers from digits (standard form) to words for students to receive immediate feedback.
- Top Ten spelling assistance charts available in cursive and stick and ball font.

Often, some of the most challenging difficulties occur with recording and reading two-digit numbers in words. These are more challenging than learning the three-digit counterparts, in that some of the tens numbers do not follow a logical pattern:

- $40,60,70,80$ and 90 follow the 'ty' pattern where seventy is simply seven and 'ty' for tens at the end
- 30 and 50 , thirty fifty follow the ordinal form
- twenty and the teens follow neither, although twenty stands for (two tens).

In this sense, the hundreds is more straightforward, because three hundred is literally said as 'three hundred' in English, not 'threedy' or the like. However, the hundreds has 'and' said after it, which is why we highly recommend using 'hundreds hundred and \mid tens (ty) ${ }^{\text {ones }}$ and-tens (ty) - ones charts' (as shown here), rather than just h-t-o charts. Writing 'and' after the hundreds in the chart helps students remember to say it while reading back numbers to their partner, particularly for ESL students. Also check that students have maintained their understanding of the teens numbers, for example, by asking a student to make 417, then 471, using the place value blocks, to show the difference between these two numbers.

CRITICAL TIP! Place value form: The number is written in a way that highlights its place value composition, for example, ' 456 ' would be said out loud as, " 4 of the hundreds, 5 of the tens, 6 of the ones," or " 4 hundreds, 5 tens, 6 ones." Students record using mathematical shorthand, such as ' $4 \mathrm{~h}+5 \mathrm{t}+6$ ones' or ' $4 \mathrm{~h}+5 \mathrm{t}+6 \mathrm{u}$.' Avoid writing 'o' for 'ones,' as this could be confused with 0 - instead write 'ones' as the full word, or ' u ' for units.

Expanded form/notation: 526 as $500+20+6$. Avoid over-emphasising this notation. CRITICAL TIP! Australian numeracy coaches advise to emphasise what we call 'place value form,' and avoid over-emphasising expanded form. Expanded form encourages students to see numbers as large sets of ones, rather than thinking in place values and seeing each place as a unit in itself. This leads to a student seeing 526 as 500 ones +20 ones +6 ones, rather than as ' 5 hundreds, 2 tens and 6 ones.' If the student needed to add 100 to 526 , with a place value form understanding they could use the strategy $5 \mathrm{~h}+1 \mathrm{~h}$ makes 6 h (5 hundreds +1 more hundred, visualising the place value blocks), but with an expanded form understanding they would be more inclined to start counting on, by ones, from 526.

Internal zeroes: Three and four-digit numbers give rise to internal zeroes. For many students, this is their first encounter with this concept. Ensure that students understand the meaning of an internal zero - that there is zero of that place value (in the photo, zero hundreds and zero ones). Zero is the way we show that there are none of that place value. A few authors, such as Dianne Siemon, also describe zero as a 'place value holder.' However, showing students that there are zero of that place with materials is an even stronger and more visual explanation.

A renaming focus follows this unit (Place Value Unit 16), which encourages students to develop more flexibility in the sense that 1050 can be made using 10 hundreds and 50 ones (not zero).

Example Anchor Charts and Numeracy Walls

Photocopy a few pieces of students' personal best work each week and place them on a set spot on your classroom numeracy wall:

If your drawing skills are lacking, stick materials onto your anchor charts instead!

Show students how the hundreds, tens and ones pattern continues in the thousands and millions family. Otherwise, many students form the misconception that the place value system is 'ones, tens, hundreds, thousands, millions,' instead of 'ones, tens, hundreds; one thousands, ten thousands, hundred thousands; one millions, tens millions,' and so on:

Choose a colour for each place value that is consistent across the school, which students can mirror in their recording. This is particularly helpful for visual learners.

Warm-Up Games - 1 of $\mathbf{1 0 0}^{+}$warm-ups

Specifically linked to each skill and stage within the sequential units
Partitioning
One of the Warm-Up Games in Addition Unit 4
Early Stage 1
Last Hands Standing!

> Students verse each other at proposing different ways to make the number of the day using their fingers.
> For example, the teacher says the number of the day is 6 .
> Student A: Pulls out 3 fingers on their right hand and 3 on their left hand, making 6 fingers altogether. Both students record this using the and is template from this unit's folder: 3 and 3 makes 6 , $3+3=6$
> Student B: Pulls out 2 fingers on their right hand and 4 on their left hand. Both students record in the template. The game continues until both players run out of ideas.
> Rule 1: Students cannot repeat a combination that has already been recorded.
> Rule 2: Commutative (turnaround) rules are accepted. Student B proposed 2 fingers on the right hand and 4 on the left, student A can then propose 4 on the right and 2 on the left to make 6 . This will encourage students to take advantage of these 'freebie' maths facts. The last player to propose an accurate combination wins the last hands standing!
> Warm-up in action - all the ways to show 3 in Kindergarten

This is excellent subitising practice with other objects (fingers), to avoid students only becoming accustomed to practising subitising using dot dice or the like.

Warm-up Games - 1 of $\mathbf{1 0 0}^{+}$warm-ups

Specifically linked to each skill and stage within sequential units, front-loading new content and building mental fluency in preceding developmental steps.

Warm-Up
Stage 1
All the
ways to
make the
numbers
3 to 9

One of the Warm-up Games to revise skills needed for Addition Unit 8 - Building to 10
Use number bond templates (3 laminated kinder circles as shown in the photo) to revise all the ways to make the numbers 3 to 9 . Start with the total in the single circle, then push a few counters to the top circle and the rest to the bottom. 8 is made of 2 and 6 . Restart the 8 in the centre circle and repeat, but with a different combination that makes 8 . Later, use the three circles to break the number into three parts, as shown here with 12 as $6+4+2$:

Stage 1 (Grade 1) student work sample for a 10-minute warm-up

